Commit
·
63c505b
1
Parent(s):
330f2dc
Update README.md
Browse files
README.md
CHANGED
@@ -13,6 +13,8 @@ model-index:
|
|
13 |
dataset:
|
14 |
type: mteb/amazon_counterfactual
|
15 |
name: MTEB AmazonCounterfactualClassification (en)
|
|
|
|
|
16 |
metrics:
|
17 |
- type: accuracy
|
18 |
value: 61.23880597014926
|
@@ -25,6 +27,8 @@ model-index:
|
|
25 |
dataset:
|
26 |
type: mteb/amazon_counterfactual
|
27 |
name: MTEB AmazonCounterfactualClassification (de)
|
|
|
|
|
28 |
metrics:
|
29 |
- type: accuracy
|
30 |
value: 56.88436830835117
|
@@ -37,6 +41,8 @@ model-index:
|
|
37 |
dataset:
|
38 |
type: mteb/amazon_counterfactual
|
39 |
name: MTEB AmazonCounterfactualClassification (en-ext)
|
|
|
|
|
40 |
metrics:
|
41 |
- type: accuracy
|
42 |
value: 58.27586206896551
|
@@ -49,6 +55,8 @@ model-index:
|
|
49 |
dataset:
|
50 |
type: mteb/amazon_counterfactual
|
51 |
name: MTEB AmazonCounterfactualClassification (ja)
|
|
|
|
|
52 |
metrics:
|
53 |
- type: accuracy
|
54 |
value: 54.64668094218415
|
@@ -61,6 +69,8 @@ model-index:
|
|
61 |
dataset:
|
62 |
type: mteb/amazon_polarity
|
63 |
name: MTEB AmazonPolarityClassification
|
|
|
|
|
64 |
metrics:
|
65 |
- type: accuracy
|
66 |
value: 65.401225
|
@@ -73,6 +83,8 @@ model-index:
|
|
73 |
dataset:
|
74 |
type: mteb/amazon_reviews_multi
|
75 |
name: MTEB AmazonReviewsClassification (en)
|
|
|
|
|
76 |
metrics:
|
77 |
- type: accuracy
|
78 |
value: 31.165999999999993
|
@@ -83,6 +95,8 @@ model-index:
|
|
83 |
dataset:
|
84 |
type: mteb/amazon_reviews_multi
|
85 |
name: MTEB AmazonReviewsClassification (de)
|
|
|
|
|
86 |
metrics:
|
87 |
- type: accuracy
|
88 |
value: 24.79
|
@@ -93,6 +107,8 @@ model-index:
|
|
93 |
dataset:
|
94 |
type: mteb/amazon_reviews_multi
|
95 |
name: MTEB AmazonReviewsClassification (es)
|
|
|
|
|
96 |
metrics:
|
97 |
- type: accuracy
|
98 |
value: 26.643999999999995
|
@@ -103,6 +119,8 @@ model-index:
|
|
103 |
dataset:
|
104 |
type: mteb/amazon_reviews_multi
|
105 |
name: MTEB AmazonReviewsClassification (fr)
|
|
|
|
|
106 |
metrics:
|
107 |
- type: accuracy
|
108 |
value: 26.386000000000003
|
@@ -113,6 +131,8 @@ model-index:
|
|
113 |
dataset:
|
114 |
type: mteb/amazon_reviews_multi
|
115 |
name: MTEB AmazonReviewsClassification (ja)
|
|
|
|
|
116 |
metrics:
|
117 |
- type: accuracy
|
118 |
value: 22.078000000000003
|
@@ -123,6 +143,8 @@ model-index:
|
|
123 |
dataset:
|
124 |
type: mteb/amazon_reviews_multi
|
125 |
name: MTEB AmazonReviewsClassification (zh)
|
|
|
|
|
126 |
metrics:
|
127 |
- type: accuracy
|
128 |
value: 24.274
|
@@ -133,6 +155,8 @@ model-index:
|
|
133 |
dataset:
|
134 |
type: arguana
|
135 |
name: MTEB ArguAna
|
|
|
|
|
136 |
metrics:
|
137 |
- type: map_at_1
|
138 |
value: 22.404
|
@@ -199,6 +223,8 @@ model-index:
|
|
199 |
dataset:
|
200 |
type: mteb/arxiv-clustering-p2p
|
201 |
name: MTEB ArxivClusteringP2P
|
|
|
|
|
202 |
metrics:
|
203 |
- type: v_measure
|
204 |
value: 39.70858340673288
|
@@ -207,6 +233,8 @@ model-index:
|
|
207 |
dataset:
|
208 |
type: mteb/arxiv-clustering-s2s
|
209 |
name: MTEB ArxivClusteringS2S
|
|
|
|
|
210 |
metrics:
|
211 |
- type: v_measure
|
212 |
value: 28.242847713721048
|
@@ -215,6 +243,8 @@ model-index:
|
|
215 |
dataset:
|
216 |
type: mteb/askubuntudupquestions-reranking
|
217 |
name: MTEB AskUbuntuDupQuestions
|
|
|
|
|
218 |
metrics:
|
219 |
- type: map
|
220 |
value: 55.83700395192393
|
@@ -225,6 +255,8 @@ model-index:
|
|
225 |
dataset:
|
226 |
type: mteb/biosses-sts
|
227 |
name: MTEB BIOSSES
|
|
|
|
|
228 |
metrics:
|
229 |
- type: cos_sim_pearson
|
230 |
value: 79.25366801756223
|
@@ -243,6 +275,8 @@ model-index:
|
|
243 |
dataset:
|
244 |
type: mteb/banking77
|
245 |
name: MTEB Banking77Classification
|
|
|
|
|
246 |
metrics:
|
247 |
- type: accuracy
|
248 |
value: 77.70454545454545
|
@@ -253,6 +287,8 @@ model-index:
|
|
253 |
dataset:
|
254 |
type: mteb/biorxiv-clustering-p2p
|
255 |
name: MTEB BiorxivClusteringP2P
|
|
|
|
|
256 |
metrics:
|
257 |
- type: v_measure
|
258 |
value: 33.63260395543984
|
@@ -261,6 +297,8 @@ model-index:
|
|
261 |
dataset:
|
262 |
type: mteb/biorxiv-clustering-s2s
|
263 |
name: MTEB BiorxivClusteringS2S
|
|
|
|
|
264 |
metrics:
|
265 |
- type: v_measure
|
266 |
value: 27.038042665369925
|
@@ -269,6 +307,8 @@ model-index:
|
|
269 |
dataset:
|
270 |
type: BeIR/cqadupstack
|
271 |
name: MTEB CQADupstackAndroidRetrieval
|
|
|
|
|
272 |
metrics:
|
273 |
- type: map_at_1
|
274 |
value: 22.139
|
@@ -335,6 +375,8 @@ model-index:
|
|
335 |
dataset:
|
336 |
type: BeIR/cqadupstack
|
337 |
name: MTEB CQADupstackEnglishRetrieval
|
|
|
|
|
338 |
metrics:
|
339 |
- type: map_at_1
|
340 |
value: 20.652
|
@@ -401,6 +443,8 @@ model-index:
|
|
401 |
dataset:
|
402 |
type: BeIR/cqadupstack
|
403 |
name: MTEB CQADupstackGamingRetrieval
|
|
|
|
|
404 |
metrics:
|
405 |
- type: map_at_1
|
406 |
value: 25.180000000000003
|
@@ -467,6 +511,8 @@ model-index:
|
|
467 |
dataset:
|
468 |
type: BeIR/cqadupstack
|
469 |
name: MTEB CQADupstackGisRetrieval
|
|
|
|
|
470 |
metrics:
|
471 |
- type: map_at_1
|
472 |
value: 16.303
|
@@ -533,6 +579,8 @@ model-index:
|
|
533 |
dataset:
|
534 |
type: BeIR/cqadupstack
|
535 |
name: MTEB CQADupstackMathematicaRetrieval
|
|
|
|
|
536 |
metrics:
|
537 |
- type: map_at_1
|
538 |
value: 10.133000000000001
|
@@ -599,6 +647,8 @@ model-index:
|
|
599 |
dataset:
|
600 |
type: BeIR/cqadupstack
|
601 |
name: MTEB CQADupstackPhysicsRetrieval
|
|
|
|
|
602 |
metrics:
|
603 |
- type: map_at_1
|
604 |
value: 19.991999999999997
|
@@ -665,6 +715,8 @@ model-index:
|
|
665 |
dataset:
|
666 |
type: BeIR/cqadupstack
|
667 |
name: MTEB CQADupstackProgrammersRetrieval
|
|
|
|
|
668 |
metrics:
|
669 |
- type: map_at_1
|
670 |
value: 17.896
|
@@ -731,6 +783,8 @@ model-index:
|
|
731 |
dataset:
|
732 |
type: BeIR/cqadupstack
|
733 |
name: MTEB CQADupstackRetrieval
|
|
|
|
|
734 |
metrics:
|
735 |
- type: map_at_1
|
736 |
value: 17.195166666666665
|
@@ -797,6 +851,8 @@ model-index:
|
|
797 |
dataset:
|
798 |
type: BeIR/cqadupstack
|
799 |
name: MTEB CQADupstackStatsRetrieval
|
|
|
|
|
800 |
metrics:
|
801 |
- type: map_at_1
|
802 |
value: 16.779
|
@@ -863,6 +919,8 @@ model-index:
|
|
863 |
dataset:
|
864 |
type: BeIR/cqadupstack
|
865 |
name: MTEB CQADupstackTexRetrieval
|
|
|
|
|
866 |
metrics:
|
867 |
- type: map_at_1
|
868 |
value: 9.279
|
@@ -929,6 +987,8 @@ model-index:
|
|
929 |
dataset:
|
930 |
type: BeIR/cqadupstack
|
931 |
name: MTEB CQADupstackUnixRetrieval
|
|
|
|
|
932 |
metrics:
|
933 |
- type: map_at_1
|
934 |
value: 16.36
|
@@ -995,6 +1055,8 @@ model-index:
|
|
995 |
dataset:
|
996 |
type: BeIR/cqadupstack
|
997 |
name: MTEB CQADupstackWebmastersRetrieval
|
|
|
|
|
998 |
metrics:
|
999 |
- type: map_at_1
|
1000 |
value: 17.39
|
@@ -1061,6 +1123,8 @@ model-index:
|
|
1061 |
dataset:
|
1062 |
type: BeIR/cqadupstack
|
1063 |
name: MTEB CQADupstackWordpressRetrieval
|
|
|
|
|
1064 |
metrics:
|
1065 |
- type: map_at_1
|
1066 |
value: 14.238999999999999
|
@@ -1127,6 +1191,8 @@ model-index:
|
|
1127 |
dataset:
|
1128 |
type: climate-fever
|
1129 |
name: MTEB ClimateFEVER
|
|
|
|
|
1130 |
metrics:
|
1131 |
- type: map_at_1
|
1132 |
value: 8.828
|
@@ -1193,6 +1259,8 @@ model-index:
|
|
1193 |
dataset:
|
1194 |
type: dbpedia-entity
|
1195 |
name: MTEB DBPedia
|
|
|
|
|
1196 |
metrics:
|
1197 |
- type: map_at_1
|
1198 |
value: 5.586
|
@@ -1259,6 +1327,8 @@ model-index:
|
|
1259 |
dataset:
|
1260 |
type: mteb/emotion
|
1261 |
name: MTEB EmotionClassification
|
|
|
|
|
1262 |
metrics:
|
1263 |
- type: accuracy
|
1264 |
value: 39.075
|
@@ -1269,6 +1339,8 @@ model-index:
|
|
1269 |
dataset:
|
1270 |
type: fever
|
1271 |
name: MTEB FEVER
|
|
|
|
|
1272 |
metrics:
|
1273 |
- type: map_at_1
|
1274 |
value: 43.519999999999996
|
@@ -1335,6 +1407,8 @@ model-index:
|
|
1335 |
dataset:
|
1336 |
type: fiqa
|
1337 |
name: MTEB FiQA2018
|
|
|
|
|
1338 |
metrics:
|
1339 |
- type: map_at_1
|
1340 |
value: 9.549000000000001
|
@@ -1401,6 +1475,8 @@ model-index:
|
|
1401 |
dataset:
|
1402 |
type: hotpotqa
|
1403 |
name: MTEB HotpotQA
|
|
|
|
|
1404 |
metrics:
|
1405 |
- type: map_at_1
|
1406 |
value: 25.544
|
@@ -1467,6 +1543,8 @@ model-index:
|
|
1467 |
dataset:
|
1468 |
type: mteb/imdb
|
1469 |
name: MTEB ImdbClassification
|
|
|
|
|
1470 |
metrics:
|
1471 |
- type: accuracy
|
1472 |
value: 58.6696
|
@@ -1479,6 +1557,8 @@ model-index:
|
|
1479 |
dataset:
|
1480 |
type: msmarco
|
1481 |
name: MTEB MSMARCO
|
|
|
|
|
1482 |
metrics:
|
1483 |
- type: map_at_1
|
1484 |
value: 14.442
|
@@ -1545,6 +1625,8 @@ model-index:
|
|
1545 |
dataset:
|
1546 |
type: mteb/mtop_domain
|
1547 |
name: MTEB MTOPDomainClassification (en)
|
|
|
|
|
1548 |
metrics:
|
1549 |
- type: accuracy
|
1550 |
value: 86.95622435020519
|
@@ -1555,6 +1637,8 @@ model-index:
|
|
1555 |
dataset:
|
1556 |
type: mteb/mtop_domain
|
1557 |
name: MTEB MTOPDomainClassification (de)
|
|
|
|
|
1558 |
metrics:
|
1559 |
- type: accuracy
|
1560 |
value: 62.73034657650043
|
@@ -1565,6 +1649,8 @@ model-index:
|
|
1565 |
dataset:
|
1566 |
type: mteb/mtop_domain
|
1567 |
name: MTEB MTOPDomainClassification (es)
|
|
|
|
|
1568 |
metrics:
|
1569 |
- type: accuracy
|
1570 |
value: 67.54503002001334
|
@@ -1575,6 +1661,8 @@ model-index:
|
|
1575 |
dataset:
|
1576 |
type: mteb/mtop_domain
|
1577 |
name: MTEB MTOPDomainClassification (fr)
|
|
|
|
|
1578 |
metrics:
|
1579 |
- type: accuracy
|
1580 |
value: 65.35233322893829
|
@@ -1585,6 +1673,8 @@ model-index:
|
|
1585 |
dataset:
|
1586 |
type: mteb/mtop_domain
|
1587 |
name: MTEB MTOPDomainClassification (hi)
|
|
|
|
|
1588 |
metrics:
|
1589 |
- type: accuracy
|
1590 |
value: 45.37110075295806
|
@@ -1595,6 +1685,8 @@ model-index:
|
|
1595 |
dataset:
|
1596 |
type: mteb/mtop_domain
|
1597 |
name: MTEB MTOPDomainClassification (th)
|
|
|
|
|
1598 |
metrics:
|
1599 |
- type: accuracy
|
1600 |
value: 55.276672694394215
|
@@ -1605,6 +1697,8 @@ model-index:
|
|
1605 |
dataset:
|
1606 |
type: mteb/mtop_intent
|
1607 |
name: MTEB MTOPIntentClassification (en)
|
|
|
|
|
1608 |
metrics:
|
1609 |
- type: accuracy
|
1610 |
value: 62.25262197902417
|
@@ -1615,6 +1709,8 @@ model-index:
|
|
1615 |
dataset:
|
1616 |
type: mteb/mtop_intent
|
1617 |
name: MTEB MTOPIntentClassification (de)
|
|
|
|
|
1618 |
metrics:
|
1619 |
- type: accuracy
|
1620 |
value: 49.56043956043956
|
@@ -1625,6 +1721,8 @@ model-index:
|
|
1625 |
dataset:
|
1626 |
type: mteb/mtop_intent
|
1627 |
name: MTEB MTOPIntentClassification (es)
|
|
|
|
|
1628 |
metrics:
|
1629 |
- type: accuracy
|
1630 |
value: 49.93995997331555
|
@@ -1635,6 +1733,8 @@ model-index:
|
|
1635 |
dataset:
|
1636 |
type: mteb/mtop_intent
|
1637 |
name: MTEB MTOPIntentClassification (fr)
|
|
|
|
|
1638 |
metrics:
|
1639 |
- type: accuracy
|
1640 |
value: 46.32947071719386
|
@@ -1645,6 +1745,8 @@ model-index:
|
|
1645 |
dataset:
|
1646 |
type: mteb/mtop_intent
|
1647 |
name: MTEB MTOPIntentClassification (hi)
|
|
|
|
|
1648 |
metrics:
|
1649 |
- type: accuracy
|
1650 |
value: 32.208676945141626
|
@@ -1655,6 +1757,8 @@ model-index:
|
|
1655 |
dataset:
|
1656 |
type: mteb/mtop_intent
|
1657 |
name: MTEB MTOPIntentClassification (th)
|
|
|
|
|
1658 |
metrics:
|
1659 |
- type: accuracy
|
1660 |
value: 43.627486437613015
|
@@ -1665,6 +1769,8 @@ model-index:
|
|
1665 |
dataset:
|
1666 |
type: mteb/amazon_massive_intent
|
1667 |
name: MTEB MassiveIntentClassification (af)
|
|
|
|
|
1668 |
metrics:
|
1669 |
- type: accuracy
|
1670 |
value: 40.548083389374575
|
@@ -1675,6 +1781,8 @@ model-index:
|
|
1675 |
dataset:
|
1676 |
type: mteb/amazon_massive_intent
|
1677 |
name: MTEB MassiveIntentClassification (am)
|
|
|
|
|
1678 |
metrics:
|
1679 |
- type: accuracy
|
1680 |
value: 24.18291862811029
|
@@ -1685,6 +1793,8 @@ model-index:
|
|
1685 |
dataset:
|
1686 |
type: mteb/amazon_massive_intent
|
1687 |
name: MTEB MassiveIntentClassification (ar)
|
|
|
|
|
1688 |
metrics:
|
1689 |
- type: accuracy
|
1690 |
value: 30.134498991257562
|
@@ -1695,6 +1805,8 @@ model-index:
|
|
1695 |
dataset:
|
1696 |
type: mteb/amazon_massive_intent
|
1697 |
name: MTEB MassiveIntentClassification (az)
|
|
|
|
|
1698 |
metrics:
|
1699 |
- type: accuracy
|
1700 |
value: 35.88433086751849
|
@@ -1705,6 +1817,8 @@ model-index:
|
|
1705 |
dataset:
|
1706 |
type: mteb/amazon_massive_intent
|
1707 |
name: MTEB MassiveIntentClassification (bn)
|
|
|
|
|
1708 |
metrics:
|
1709 |
- type: accuracy
|
1710 |
value: 29.17283120376597
|
@@ -1715,6 +1829,8 @@ model-index:
|
|
1715 |
dataset:
|
1716 |
type: mteb/amazon_massive_intent
|
1717 |
name: MTEB MassiveIntentClassification (cy)
|
|
|
|
|
1718 |
metrics:
|
1719 |
- type: accuracy
|
1720 |
value: 41.788836583725626
|
@@ -1725,6 +1841,8 @@ model-index:
|
|
1725 |
dataset:
|
1726 |
type: mteb/amazon_massive_intent
|
1727 |
name: MTEB MassiveIntentClassification (da)
|
|
|
|
|
1728 |
metrics:
|
1729 |
- type: accuracy
|
1730 |
value: 44.176193678547406
|
@@ -1735,6 +1853,8 @@ model-index:
|
|
1735 |
dataset:
|
1736 |
type: mteb/amazon_massive_intent
|
1737 |
name: MTEB MassiveIntentClassification (de)
|
|
|
|
|
1738 |
metrics:
|
1739 |
- type: accuracy
|
1740 |
value: 42.07464694014795
|
@@ -1745,6 +1865,8 @@ model-index:
|
|
1745 |
dataset:
|
1746 |
type: mteb/amazon_massive_intent
|
1747 |
name: MTEB MassiveIntentClassification (el)
|
|
|
|
|
1748 |
metrics:
|
1749 |
- type: accuracy
|
1750 |
value: 36.254203093476804
|
@@ -1755,6 +1877,8 @@ model-index:
|
|
1755 |
dataset:
|
1756 |
type: mteb/amazon_massive_intent
|
1757 |
name: MTEB MassiveIntentClassification (en)
|
|
|
|
|
1758 |
metrics:
|
1759 |
- type: accuracy
|
1760 |
value: 61.40887693342301
|
@@ -1765,6 +1889,8 @@ model-index:
|
|
1765 |
dataset:
|
1766 |
type: mteb/amazon_massive_intent
|
1767 |
name: MTEB MassiveIntentClassification (es)
|
|
|
|
|
1768 |
metrics:
|
1769 |
- type: accuracy
|
1770 |
value: 42.679892400807
|
@@ -1775,6 +1901,8 @@ model-index:
|
|
1775 |
dataset:
|
1776 |
type: mteb/amazon_massive_intent
|
1777 |
name: MTEB MassiveIntentClassification (fa)
|
|
|
|
|
1778 |
metrics:
|
1779 |
- type: accuracy
|
1780 |
value: 35.59179556153329
|
@@ -1785,6 +1913,8 @@ model-index:
|
|
1785 |
dataset:
|
1786 |
type: mteb/amazon_massive_intent
|
1787 |
name: MTEB MassiveIntentClassification (fi)
|
|
|
|
|
1788 |
metrics:
|
1789 |
- type: accuracy
|
1790 |
value: 40.036987222595826
|
@@ -1795,6 +1925,8 @@ model-index:
|
|
1795 |
dataset:
|
1796 |
type: mteb/amazon_massive_intent
|
1797 |
name: MTEB MassiveIntentClassification (fr)
|
|
|
|
|
1798 |
metrics:
|
1799 |
- type: accuracy
|
1800 |
value: 43.43981170141224
|
@@ -1805,6 +1937,8 @@ model-index:
|
|
1805 |
dataset:
|
1806 |
type: mteb/amazon_massive_intent
|
1807 |
name: MTEB MassiveIntentClassification (he)
|
|
|
|
|
1808 |
metrics:
|
1809 |
- type: accuracy
|
1810 |
value: 31.593813046402154
|
@@ -1815,6 +1949,8 @@ model-index:
|
|
1815 |
dataset:
|
1816 |
type: mteb/amazon_massive_intent
|
1817 |
name: MTEB MassiveIntentClassification (hi)
|
|
|
|
|
1818 |
metrics:
|
1819 |
- type: accuracy
|
1820 |
value: 27.044384667114997
|
@@ -1825,6 +1961,8 @@ model-index:
|
|
1825 |
dataset:
|
1826 |
type: mteb/amazon_massive_intent
|
1827 |
name: MTEB MassiveIntentClassification (hu)
|
|
|
|
|
1828 |
metrics:
|
1829 |
- type: accuracy
|
1830 |
value: 38.453261600538
|
@@ -1835,6 +1973,8 @@ model-index:
|
|
1835 |
dataset:
|
1836 |
type: mteb/amazon_massive_intent
|
1837 |
name: MTEB MassiveIntentClassification (hy)
|
|
|
|
|
1838 |
metrics:
|
1839 |
- type: accuracy
|
1840 |
value: 27.979152656355076
|
@@ -1845,6 +1985,8 @@ model-index:
|
|
1845 |
dataset:
|
1846 |
type: mteb/amazon_massive_intent
|
1847 |
name: MTEB MassiveIntentClassification (id)
|
|
|
|
|
1848 |
metrics:
|
1849 |
- type: accuracy
|
1850 |
value: 43.97108271687963
|
@@ -1855,6 +1997,8 @@ model-index:
|
|
1855 |
dataset:
|
1856 |
type: mteb/amazon_massive_intent
|
1857 |
name: MTEB MassiveIntentClassification (is)
|
|
|
|
|
1858 |
metrics:
|
1859 |
- type: accuracy
|
1860 |
value: 40.302622730329524
|
@@ -1865,6 +2009,8 @@ model-index:
|
|
1865 |
dataset:
|
1866 |
type: mteb/amazon_massive_intent
|
1867 |
name: MTEB MassiveIntentClassification (it)
|
|
|
|
|
1868 |
metrics:
|
1869 |
- type: accuracy
|
1870 |
value: 45.474108944182916
|
@@ -1875,6 +2021,8 @@ model-index:
|
|
1875 |
dataset:
|
1876 |
type: mteb/amazon_massive_intent
|
1877 |
name: MTEB MassiveIntentClassification (ja)
|
|
|
|
|
1878 |
metrics:
|
1879 |
- type: accuracy
|
1880 |
value: 45.60860793544048
|
@@ -1885,6 +2033,8 @@ model-index:
|
|
1885 |
dataset:
|
1886 |
type: mteb/amazon_massive_intent
|
1887 |
name: MTEB MassiveIntentClassification (jv)
|
|
|
|
|
1888 |
metrics:
|
1889 |
- type: accuracy
|
1890 |
value: 38.668459986550104
|
@@ -1895,6 +2045,8 @@ model-index:
|
|
1895 |
dataset:
|
1896 |
type: mteb/amazon_massive_intent
|
1897 |
name: MTEB MassiveIntentClassification (ka)
|
|
|
|
|
1898 |
metrics:
|
1899 |
- type: accuracy
|
1900 |
value: 25.6523201075992
|
@@ -1905,6 +2057,8 @@ model-index:
|
|
1905 |
dataset:
|
1906 |
type: mteb/amazon_massive_intent
|
1907 |
name: MTEB MassiveIntentClassification (km)
|
|
|
|
|
1908 |
metrics:
|
1909 |
- type: accuracy
|
1910 |
value: 28.295225285810353
|
@@ -1915,6 +2069,8 @@ model-index:
|
|
1915 |
dataset:
|
1916 |
type: mteb/amazon_massive_intent
|
1917 |
name: MTEB MassiveIntentClassification (kn)
|
|
|
|
|
1918 |
metrics:
|
1919 |
- type: accuracy
|
1920 |
value: 23.480161398789505
|
@@ -1925,6 +2081,8 @@ model-index:
|
|
1925 |
dataset:
|
1926 |
type: mteb/amazon_massive_intent
|
1927 |
name: MTEB MassiveIntentClassification (ko)
|
|
|
|
|
1928 |
metrics:
|
1929 |
- type: accuracy
|
1930 |
value: 36.55682582380632
|
@@ -1935,6 +2093,8 @@ model-index:
|
|
1935 |
dataset:
|
1936 |
type: mteb/amazon_massive_intent
|
1937 |
name: MTEB MassiveIntentClassification (lv)
|
|
|
|
|
1938 |
metrics:
|
1939 |
- type: accuracy
|
1940 |
value: 41.84936112979153
|
@@ -1945,6 +2105,8 @@ model-index:
|
|
1945 |
dataset:
|
1946 |
type: mteb/amazon_massive_intent
|
1947 |
name: MTEB MassiveIntentClassification (ml)
|
|
|
|
|
1948 |
metrics:
|
1949 |
- type: accuracy
|
1950 |
value: 24.90921318090114
|
@@ -1955,6 +2117,8 @@ model-index:
|
|
1955 |
dataset:
|
1956 |
type: mteb/amazon_massive_intent
|
1957 |
name: MTEB MassiveIntentClassification (mn)
|
|
|
|
|
1958 |
metrics:
|
1959 |
- type: accuracy
|
1960 |
value: 29.86213853396099
|
@@ -1965,6 +2129,8 @@ model-index:
|
|
1965 |
dataset:
|
1966 |
type: mteb/amazon_massive_intent
|
1967 |
name: MTEB MassiveIntentClassification (ms)
|
|
|
|
|
1968 |
metrics:
|
1969 |
- type: accuracy
|
1970 |
value: 42.42098184263618
|
@@ -1975,6 +2141,8 @@ model-index:
|
|
1975 |
dataset:
|
1976 |
type: mteb/amazon_massive_intent
|
1977 |
name: MTEB MassiveIntentClassification (my)
|
|
|
|
|
1978 |
metrics:
|
1979 |
- type: accuracy
|
1980 |
value: 25.131136516476126
|
@@ -1985,6 +2153,8 @@ model-index:
|
|
1985 |
dataset:
|
1986 |
type: mteb/amazon_massive_intent
|
1987 |
name: MTEB MassiveIntentClassification (nb)
|
|
|
|
|
1988 |
metrics:
|
1989 |
- type: accuracy
|
1990 |
value: 39.81506388702084
|
@@ -1995,6 +2165,8 @@ model-index:
|
|
1995 |
dataset:
|
1996 |
type: mteb/amazon_massive_intent
|
1997 |
name: MTEB MassiveIntentClassification (nl)
|
|
|
|
|
1998 |
metrics:
|
1999 |
- type: accuracy
|
2000 |
value: 43.62138533960995
|
@@ -2005,6 +2177,8 @@ model-index:
|
|
2005 |
dataset:
|
2006 |
type: mteb/amazon_massive_intent
|
2007 |
name: MTEB MassiveIntentClassification (pl)
|
|
|
|
|
2008 |
metrics:
|
2009 |
- type: accuracy
|
2010 |
value: 42.19569603227976
|
@@ -2015,6 +2189,8 @@ model-index:
|
|
2015 |
dataset:
|
2016 |
type: mteb/amazon_massive_intent
|
2017 |
name: MTEB MassiveIntentClassification (pt)
|
|
|
|
|
2018 |
metrics:
|
2019 |
- type: accuracy
|
2020 |
value: 45.20847343644923
|
@@ -2025,6 +2201,8 @@ model-index:
|
|
2025 |
dataset:
|
2026 |
type: mteb/amazon_massive_intent
|
2027 |
name: MTEB MassiveIntentClassification (ro)
|
|
|
|
|
2028 |
metrics:
|
2029 |
- type: accuracy
|
2030 |
value: 41.80901143241426
|
@@ -2035,6 +2213,8 @@ model-index:
|
|
2035 |
dataset:
|
2036 |
type: mteb/amazon_massive_intent
|
2037 |
name: MTEB MassiveIntentClassification (ru)
|
|
|
|
|
2038 |
metrics:
|
2039 |
- type: accuracy
|
2040 |
value: 35.96839273705447
|
@@ -2045,6 +2225,8 @@ model-index:
|
|
2045 |
dataset:
|
2046 |
type: mteb/amazon_massive_intent
|
2047 |
name: MTEB MassiveIntentClassification (sl)
|
|
|
|
|
2048 |
metrics:
|
2049 |
- type: accuracy
|
2050 |
value: 40.60524546065905
|
@@ -2055,6 +2237,8 @@ model-index:
|
|
2055 |
dataset:
|
2056 |
type: mteb/amazon_massive_intent
|
2057 |
name: MTEB MassiveIntentClassification (sq)
|
|
|
|
|
2058 |
metrics:
|
2059 |
- type: accuracy
|
2060 |
value: 42.75722932078009
|
@@ -2065,6 +2249,8 @@ model-index:
|
|
2065 |
dataset:
|
2066 |
type: mteb/amazon_massive_intent
|
2067 |
name: MTEB MassiveIntentClassification (sv)
|
|
|
|
|
2068 |
metrics:
|
2069 |
- type: accuracy
|
2070 |
value: 42.347007397444514
|
@@ -2075,6 +2261,8 @@ model-index:
|
|
2075 |
dataset:
|
2076 |
type: mteb/amazon_massive_intent
|
2077 |
name: MTEB MassiveIntentClassification (sw)
|
|
|
|
|
2078 |
metrics:
|
2079 |
- type: accuracy
|
2080 |
value: 41.12306657700067
|
@@ -2085,6 +2273,8 @@ model-index:
|
|
2085 |
dataset:
|
2086 |
type: mteb/amazon_massive_intent
|
2087 |
name: MTEB MassiveIntentClassification (ta)
|
|
|
|
|
2088 |
metrics:
|
2089 |
- type: accuracy
|
2090 |
value: 24.603227975790183
|
@@ -2095,6 +2285,8 @@ model-index:
|
|
2095 |
dataset:
|
2096 |
type: mteb/amazon_massive_intent
|
2097 |
name: MTEB MassiveIntentClassification (te)
|
|
|
|
|
2098 |
metrics:
|
2099 |
- type: accuracy
|
2100 |
value: 25.03698722259583
|
@@ -2105,6 +2297,8 @@ model-index:
|
|
2105 |
dataset:
|
2106 |
type: mteb/amazon_massive_intent
|
2107 |
name: MTEB MassiveIntentClassification (th)
|
|
|
|
|
2108 |
metrics:
|
2109 |
- type: accuracy
|
2110 |
value: 35.40013449899126
|
@@ -2115,6 +2309,8 @@ model-index:
|
|
2115 |
dataset:
|
2116 |
type: mteb/amazon_massive_intent
|
2117 |
name: MTEB MassiveIntentClassification (tl)
|
|
|
|
|
2118 |
metrics:
|
2119 |
- type: accuracy
|
2120 |
value: 41.19031607262945
|
@@ -2125,6 +2321,8 @@ model-index:
|
|
2125 |
dataset:
|
2126 |
type: mteb/amazon_massive_intent
|
2127 |
name: MTEB MassiveIntentClassification (tr)
|
|
|
|
|
2128 |
metrics:
|
2129 |
- type: accuracy
|
2130 |
value: 36.405514458641555
|
@@ -2135,6 +2333,8 @@ model-index:
|
|
2135 |
dataset:
|
2136 |
type: mteb/amazon_massive_intent
|
2137 |
name: MTEB MassiveIntentClassification (ur)
|
|
|
|
|
2138 |
metrics:
|
2139 |
- type: accuracy
|
2140 |
value: 25.934767989240076
|
@@ -2145,6 +2345,8 @@ model-index:
|
|
2145 |
dataset:
|
2146 |
type: mteb/amazon_massive_intent
|
2147 |
name: MTEB MassiveIntentClassification (vi)
|
|
|
|
|
2148 |
metrics:
|
2149 |
- type: accuracy
|
2150 |
value: 38.79959650302622
|
@@ -2155,6 +2357,8 @@ model-index:
|
|
2155 |
dataset:
|
2156 |
type: mteb/amazon_massive_intent
|
2157 |
name: MTEB MassiveIntentClassification (zh-CN)
|
|
|
|
|
2158 |
metrics:
|
2159 |
- type: accuracy
|
2160 |
value: 46.244115669132476
|
@@ -2165,6 +2369,8 @@ model-index:
|
|
2165 |
dataset:
|
2166 |
type: mteb/amazon_massive_intent
|
2167 |
name: MTEB MassiveIntentClassification (zh-TW)
|
|
|
|
|
2168 |
metrics:
|
2169 |
- type: accuracy
|
2170 |
value: 42.30665770006724
|
@@ -2175,6 +2381,8 @@ model-index:
|
|
2175 |
dataset:
|
2176 |
type: mteb/amazon_massive_scenario
|
2177 |
name: MTEB MassiveScenarioClassification (af)
|
|
|
|
|
2178 |
metrics:
|
2179 |
- type: accuracy
|
2180 |
value: 43.2481506388702
|
@@ -2185,6 +2393,8 @@ model-index:
|
|
2185 |
dataset:
|
2186 |
type: mteb/amazon_massive_scenario
|
2187 |
name: MTEB MassiveScenarioClassification (am)
|
|
|
|
|
2188 |
metrics:
|
2189 |
- type: accuracy
|
2190 |
value: 25.30262273032952
|
@@ -2195,6 +2405,8 @@ model-index:
|
|
2195 |
dataset:
|
2196 |
type: mteb/amazon_massive_scenario
|
2197 |
name: MTEB MassiveScenarioClassification (ar)
|
|
|
|
|
2198 |
metrics:
|
2199 |
- type: accuracy
|
2200 |
value: 32.07128446536651
|
@@ -2205,6 +2417,8 @@ model-index:
|
|
2205 |
dataset:
|
2206 |
type: mteb/amazon_massive_scenario
|
2207 |
name: MTEB MassiveScenarioClassification (az)
|
|
|
|
|
2208 |
metrics:
|
2209 |
- type: accuracy
|
2210 |
value: 36.681237390719566
|
@@ -2215,6 +2429,8 @@ model-index:
|
|
2215 |
dataset:
|
2216 |
type: mteb/amazon_massive_scenario
|
2217 |
name: MTEB MassiveScenarioClassification (bn)
|
|
|
|
|
2218 |
metrics:
|
2219 |
- type: accuracy
|
2220 |
value: 29.56624075319435
|
@@ -2225,6 +2441,8 @@ model-index:
|
|
2225 |
dataset:
|
2226 |
type: mteb/amazon_massive_scenario
|
2227 |
name: MTEB MassiveScenarioClassification (cy)
|
|
|
|
|
2228 |
metrics:
|
2229 |
- type: accuracy
|
2230 |
value: 42.1049092131809
|
@@ -2235,6 +2453,8 @@ model-index:
|
|
2235 |
dataset:
|
2236 |
type: mteb/amazon_massive_scenario
|
2237 |
name: MTEB MassiveScenarioClassification (da)
|
|
|
|
|
2238 |
metrics:
|
2239 |
- type: accuracy
|
2240 |
value: 45.44384667114997
|
@@ -2245,6 +2465,8 @@ model-index:
|
|
2245 |
dataset:
|
2246 |
type: mteb/amazon_massive_scenario
|
2247 |
name: MTEB MassiveScenarioClassification (de)
|
|
|
|
|
2248 |
metrics:
|
2249 |
- type: accuracy
|
2250 |
value: 43.211163416274374
|
@@ -2255,6 +2477,8 @@ model-index:
|
|
2255 |
dataset:
|
2256 |
type: mteb/amazon_massive_scenario
|
2257 |
name: MTEB MassiveScenarioClassification (el)
|
|
|
|
|
2258 |
metrics:
|
2259 |
- type: accuracy
|
2260 |
value: 36.503026227303295
|
@@ -2265,6 +2489,8 @@ model-index:
|
|
2265 |
dataset:
|
2266 |
type: mteb/amazon_massive_scenario
|
2267 |
name: MTEB MassiveScenarioClassification (en)
|
|
|
|
|
2268 |
metrics:
|
2269 |
- type: accuracy
|
2270 |
value: 69.73772696704773
|
@@ -2275,6 +2501,8 @@ model-index:
|
|
2275 |
dataset:
|
2276 |
type: mteb/amazon_massive_scenario
|
2277 |
name: MTEB MassiveScenarioClassification (es)
|
|
|
|
|
2278 |
metrics:
|
2279 |
- type: accuracy
|
2280 |
value: 44.078681909885674
|
@@ -2285,6 +2513,8 @@ model-index:
|
|
2285 |
dataset:
|
2286 |
type: mteb/amazon_massive_scenario
|
2287 |
name: MTEB MassiveScenarioClassification (fa)
|
|
|
|
|
2288 |
metrics:
|
2289 |
- type: accuracy
|
2290 |
value: 32.61264290517821
|
@@ -2295,6 +2525,8 @@ model-index:
|
|
2295 |
dataset:
|
2296 |
type: mteb/amazon_massive_scenario
|
2297 |
name: MTEB MassiveScenarioClassification (fi)
|
|
|
|
|
2298 |
metrics:
|
2299 |
- type: accuracy
|
2300 |
value: 40.35642232683255
|
@@ -2305,6 +2537,8 @@ model-index:
|
|
2305 |
dataset:
|
2306 |
type: mteb/amazon_massive_scenario
|
2307 |
name: MTEB MassiveScenarioClassification (fr)
|
|
|
|
|
2308 |
metrics:
|
2309 |
- type: accuracy
|
2310 |
value: 45.06724949562878
|
@@ -2315,6 +2549,8 @@ model-index:
|
|
2315 |
dataset:
|
2316 |
type: mteb/amazon_massive_scenario
|
2317 |
name: MTEB MassiveScenarioClassification (he)
|
|
|
|
|
2318 |
metrics:
|
2319 |
- type: accuracy
|
2320 |
value: 32.178883658372555
|
@@ -2325,6 +2561,8 @@ model-index:
|
|
2325 |
dataset:
|
2326 |
type: mteb/amazon_massive_scenario
|
2327 |
name: MTEB MassiveScenarioClassification (hi)
|
|
|
|
|
2328 |
metrics:
|
2329 |
- type: accuracy
|
2330 |
value: 26.903160726294555
|
@@ -2335,6 +2573,8 @@ model-index:
|
|
2335 |
dataset:
|
2336 |
type: mteb/amazon_massive_scenario
|
2337 |
name: MTEB MassiveScenarioClassification (hu)
|
|
|
|
|
2338 |
metrics:
|
2339 |
- type: accuracy
|
2340 |
value: 40.379959650302624
|
@@ -2345,6 +2585,8 @@ model-index:
|
|
2345 |
dataset:
|
2346 |
type: mteb/amazon_massive_scenario
|
2347 |
name: MTEB MassiveScenarioClassification (hy)
|
|
|
|
|
2348 |
metrics:
|
2349 |
- type: accuracy
|
2350 |
value: 28.375924680564896
|
@@ -2355,6 +2597,8 @@ model-index:
|
|
2355 |
dataset:
|
2356 |
type: mteb/amazon_massive_scenario
|
2357 |
name: MTEB MassiveScenarioClassification (id)
|
|
|
|
|
2358 |
metrics:
|
2359 |
- type: accuracy
|
2360 |
value: 44.361129791526565
|
@@ -2365,6 +2609,8 @@ model-index:
|
|
2365 |
dataset:
|
2366 |
type: mteb/amazon_massive_scenario
|
2367 |
name: MTEB MassiveScenarioClassification (is)
|
|
|
|
|
2368 |
metrics:
|
2369 |
- type: accuracy
|
2370 |
value: 39.290517821116346
|
@@ -2375,6 +2621,8 @@ model-index:
|
|
2375 |
dataset:
|
2376 |
type: mteb/amazon_massive_scenario
|
2377 |
name: MTEB MassiveScenarioClassification (it)
|
|
|
|
|
2378 |
metrics:
|
2379 |
- type: accuracy
|
2380 |
value: 46.4694014794889
|
@@ -2385,6 +2633,8 @@ model-index:
|
|
2385 |
dataset:
|
2386 |
type: mteb/amazon_massive_scenario
|
2387 |
name: MTEB MassiveScenarioClassification (ja)
|
|
|
|
|
2388 |
metrics:
|
2389 |
- type: accuracy
|
2390 |
value: 46.25756556825824
|
@@ -2395,6 +2645,8 @@ model-index:
|
|
2395 |
dataset:
|
2396 |
type: mteb/amazon_massive_scenario
|
2397 |
name: MTEB MassiveScenarioClassification (jv)
|
|
|
|
|
2398 |
metrics:
|
2399 |
- type: accuracy
|
2400 |
value: 41.12642905178212
|
@@ -2405,6 +2657,8 @@ model-index:
|
|
2405 |
dataset:
|
2406 |
type: mteb/amazon_massive_scenario
|
2407 |
name: MTEB MassiveScenarioClassification (ka)
|
|
|
|
|
2408 |
metrics:
|
2409 |
- type: accuracy
|
2410 |
value: 24.72763954270343
|
@@ -2415,6 +2669,8 @@ model-index:
|
|
2415 |
dataset:
|
2416 |
type: mteb/amazon_massive_scenario
|
2417 |
name: MTEB MassiveScenarioClassification (km)
|
|
|
|
|
2418 |
metrics:
|
2419 |
- type: accuracy
|
2420 |
value: 29.741089441829182
|
@@ -2425,6 +2681,8 @@ model-index:
|
|
2425 |
dataset:
|
2426 |
type: mteb/amazon_massive_scenario
|
2427 |
name: MTEB MassiveScenarioClassification (kn)
|
|
|
|
|
2428 |
metrics:
|
2429 |
- type: accuracy
|
2430 |
value: 23.850033624747816
|
@@ -2435,6 +2693,8 @@ model-index:
|
|
2435 |
dataset:
|
2436 |
type: mteb/amazon_massive_scenario
|
2437 |
name: MTEB MassiveScenarioClassification (ko)
|
|
|
|
|
2438 |
metrics:
|
2439 |
- type: accuracy
|
2440 |
value: 36.56691324815064
|
@@ -2445,6 +2705,8 @@ model-index:
|
|
2445 |
dataset:
|
2446 |
type: mteb/amazon_massive_scenario
|
2447 |
name: MTEB MassiveScenarioClassification (lv)
|
|
|
|
|
2448 |
metrics:
|
2449 |
- type: accuracy
|
2450 |
value: 40.928043039677206
|
@@ -2455,6 +2717,8 @@ model-index:
|
|
2455 |
dataset:
|
2456 |
type: mteb/amazon_massive_scenario
|
2457 |
name: MTEB MassiveScenarioClassification (ml)
|
|
|
|
|
2458 |
metrics:
|
2459 |
- type: accuracy
|
2460 |
value: 25.527908540685946
|
@@ -2465,6 +2729,8 @@ model-index:
|
|
2465 |
dataset:
|
2466 |
type: mteb/amazon_massive_scenario
|
2467 |
name: MTEB MassiveScenarioClassification (mn)
|
|
|
|
|
2468 |
metrics:
|
2469 |
- type: accuracy
|
2470 |
value: 29.105581708137183
|
@@ -2475,6 +2741,8 @@ model-index:
|
|
2475 |
dataset:
|
2476 |
type: mteb/amazon_massive_scenario
|
2477 |
name: MTEB MassiveScenarioClassification (ms)
|
|
|
|
|
2478 |
metrics:
|
2479 |
- type: accuracy
|
2480 |
value: 43.78614660390047
|
@@ -2485,6 +2753,8 @@ model-index:
|
|
2485 |
dataset:
|
2486 |
type: mteb/amazon_massive_scenario
|
2487 |
name: MTEB MassiveScenarioClassification (my)
|
|
|
|
|
2488 |
metrics:
|
2489 |
- type: accuracy
|
2490 |
value: 27.269670477471415
|
@@ -2495,6 +2765,8 @@ model-index:
|
|
2495 |
dataset:
|
2496 |
type: mteb/amazon_massive_scenario
|
2497 |
name: MTEB MassiveScenarioClassification (nb)
|
|
|
|
|
2498 |
metrics:
|
2499 |
- type: accuracy
|
2500 |
value: 39.018157363819775
|
@@ -2505,6 +2777,8 @@ model-index:
|
|
2505 |
dataset:
|
2506 |
type: mteb/amazon_massive_scenario
|
2507 |
name: MTEB MassiveScenarioClassification (nl)
|
|
|
|
|
2508 |
metrics:
|
2509 |
- type: accuracy
|
2510 |
value: 45.35978480161399
|
@@ -2515,6 +2789,8 @@ model-index:
|
|
2515 |
dataset:
|
2516 |
type: mteb/amazon_massive_scenario
|
2517 |
name: MTEB MassiveScenarioClassification (pl)
|
|
|
|
|
2518 |
metrics:
|
2519 |
- type: accuracy
|
2520 |
value: 41.89307330195023
|
@@ -2525,6 +2801,8 @@ model-index:
|
|
2525 |
dataset:
|
2526 |
type: mteb/amazon_massive_scenario
|
2527 |
name: MTEB MassiveScenarioClassification (pt)
|
|
|
|
|
2528 |
metrics:
|
2529 |
- type: accuracy
|
2530 |
value: 45.901143241425686
|
@@ -2535,6 +2813,8 @@ model-index:
|
|
2535 |
dataset:
|
2536 |
type: mteb/amazon_massive_scenario
|
2537 |
name: MTEB MassiveScenarioClassification (ro)
|
|
|
|
|
2538 |
metrics:
|
2539 |
- type: accuracy
|
2540 |
value: 44.11566913248151
|
@@ -2545,6 +2825,8 @@ model-index:
|
|
2545 |
dataset:
|
2546 |
type: mteb/amazon_massive_scenario
|
2547 |
name: MTEB MassiveScenarioClassification (ru)
|
|
|
|
|
2548 |
metrics:
|
2549 |
- type: accuracy
|
2550 |
value: 32.76395427034297
|
@@ -2555,6 +2837,8 @@ model-index:
|
|
2555 |
dataset:
|
2556 |
type: mteb/amazon_massive_scenario
|
2557 |
name: MTEB MassiveScenarioClassification (sl)
|
|
|
|
|
2558 |
metrics:
|
2559 |
- type: accuracy
|
2560 |
value: 40.504371217215876
|
@@ -2565,6 +2849,8 @@ model-index:
|
|
2565 |
dataset:
|
2566 |
type: mteb/amazon_massive_scenario
|
2567 |
name: MTEB MassiveScenarioClassification (sq)
|
|
|
|
|
2568 |
metrics:
|
2569 |
- type: accuracy
|
2570 |
value: 42.51849361129792
|
@@ -2575,6 +2861,8 @@ model-index:
|
|
2575 |
dataset:
|
2576 |
type: mteb/amazon_massive_scenario
|
2577 |
name: MTEB MassiveScenarioClassification (sv)
|
|
|
|
|
2578 |
metrics:
|
2579 |
- type: accuracy
|
2580 |
value: 42.293207800941495
|
@@ -2585,6 +2873,8 @@ model-index:
|
|
2585 |
dataset:
|
2586 |
type: mteb/amazon_massive_scenario
|
2587 |
name: MTEB MassiveScenarioClassification (sw)
|
|
|
|
|
2588 |
metrics:
|
2589 |
- type: accuracy
|
2590 |
value: 42.9993275050437
|
@@ -2595,6 +2885,8 @@ model-index:
|
|
2595 |
dataset:
|
2596 |
type: mteb/amazon_massive_scenario
|
2597 |
name: MTEB MassiveScenarioClassification (ta)
|
|
|
|
|
2598 |
metrics:
|
2599 |
- type: accuracy
|
2600 |
value: 28.32548755884331
|
@@ -2605,6 +2897,8 @@ model-index:
|
|
2605 |
dataset:
|
2606 |
type: mteb/amazon_massive_scenario
|
2607 |
name: MTEB MassiveScenarioClassification (te)
|
|
|
|
|
2608 |
metrics:
|
2609 |
- type: accuracy
|
2610 |
value: 26.593813046402154
|
@@ -2615,6 +2909,8 @@ model-index:
|
|
2615 |
dataset:
|
2616 |
type: mteb/amazon_massive_scenario
|
2617 |
name: MTEB MassiveScenarioClassification (th)
|
|
|
|
|
2618 |
metrics:
|
2619 |
- type: accuracy
|
2620 |
value: 36.788836583725626
|
@@ -2625,6 +2921,8 @@ model-index:
|
|
2625 |
dataset:
|
2626 |
type: mteb/amazon_massive_scenario
|
2627 |
name: MTEB MassiveScenarioClassification (tl)
|
|
|
|
|
2628 |
metrics:
|
2629 |
- type: accuracy
|
2630 |
value: 42.5689307330195
|
@@ -2635,6 +2933,8 @@ model-index:
|
|
2635 |
dataset:
|
2636 |
type: mteb/amazon_massive_scenario
|
2637 |
name: MTEB MassiveScenarioClassification (tr)
|
|
|
|
|
2638 |
metrics:
|
2639 |
- type: accuracy
|
2640 |
value: 37.09482178883658
|
@@ -2645,6 +2945,8 @@ model-index:
|
|
2645 |
dataset:
|
2646 |
type: mteb/amazon_massive_scenario
|
2647 |
name: MTEB MassiveScenarioClassification (ur)
|
|
|
|
|
2648 |
metrics:
|
2649 |
- type: accuracy
|
2650 |
value: 28.836583725622063
|
@@ -2655,6 +2957,8 @@ model-index:
|
|
2655 |
dataset:
|
2656 |
type: mteb/amazon_massive_scenario
|
2657 |
name: MTEB MassiveScenarioClassification (vi)
|
|
|
|
|
2658 |
metrics:
|
2659 |
- type: accuracy
|
2660 |
value: 37.357094821788834
|
@@ -2665,6 +2969,8 @@ model-index:
|
|
2665 |
dataset:
|
2666 |
type: mteb/amazon_massive_scenario
|
2667 |
name: MTEB MassiveScenarioClassification (zh-CN)
|
|
|
|
|
2668 |
metrics:
|
2669 |
- type: accuracy
|
2670 |
value: 49.37794216543375
|
@@ -2675,6 +2981,8 @@ model-index:
|
|
2675 |
dataset:
|
2676 |
type: mteb/amazon_massive_scenario
|
2677 |
name: MTEB MassiveScenarioClassification (zh-TW)
|
|
|
|
|
2678 |
metrics:
|
2679 |
- type: accuracy
|
2680 |
value: 44.42165433759248
|
@@ -2685,6 +2993,8 @@ model-index:
|
|
2685 |
dataset:
|
2686 |
type: mteb/medrxiv-clustering-p2p
|
2687 |
name: MTEB MedrxivClusteringP2P
|
|
|
|
|
2688 |
metrics:
|
2689 |
- type: v_measure
|
2690 |
value: 31.374938993074252
|
@@ -2693,6 +3003,8 @@ model-index:
|
|
2693 |
dataset:
|
2694 |
type: mteb/medrxiv-clustering-s2s
|
2695 |
name: MTEB MedrxivClusteringS2S
|
|
|
|
|
2696 |
metrics:
|
2697 |
- type: v_measure
|
2698 |
value: 26.871455379644093
|
@@ -2701,6 +3013,8 @@ model-index:
|
|
2701 |
dataset:
|
2702 |
type: mteb/mind_small
|
2703 |
name: MTEB MindSmallReranking
|
|
|
|
|
2704 |
metrics:
|
2705 |
- type: map
|
2706 |
value: 30.402396942935333
|
@@ -2711,6 +3025,8 @@ model-index:
|
|
2711 |
dataset:
|
2712 |
type: nfcorpus
|
2713 |
name: MTEB NFCorpus
|
|
|
|
|
2714 |
metrics:
|
2715 |
- type: map_at_1
|
2716 |
value: 3.7740000000000005
|
@@ -2777,6 +3093,8 @@ model-index:
|
|
2777 |
dataset:
|
2778 |
type: nq
|
2779 |
name: MTEB NQ
|
|
|
|
|
2780 |
metrics:
|
2781 |
- type: map_at_1
|
2782 |
value: 15.620999999999999
|
@@ -2843,6 +3161,8 @@ model-index:
|
|
2843 |
dataset:
|
2844 |
type: quora
|
2845 |
name: MTEB QuoraRetrieval
|
|
|
|
|
2846 |
metrics:
|
2847 |
- type: map_at_1
|
2848 |
value: 54.717000000000006
|
@@ -2909,6 +3229,8 @@ model-index:
|
|
2909 |
dataset:
|
2910 |
type: mteb/reddit-clustering
|
2911 |
name: MTEB RedditClustering
|
|
|
|
|
2912 |
metrics:
|
2913 |
- type: v_measure
|
2914 |
value: 40.23390747226228
|
@@ -2917,6 +3239,8 @@ model-index:
|
|
2917 |
dataset:
|
2918 |
type: mteb/reddit-clustering-p2p
|
2919 |
name: MTEB RedditClusteringP2P
|
|
|
|
|
2920 |
metrics:
|
2921 |
- type: v_measure
|
2922 |
value: 49.090518272935626
|
@@ -2925,6 +3249,8 @@ model-index:
|
|
2925 |
dataset:
|
2926 |
type: scidocs
|
2927 |
name: MTEB SCIDOCS
|
|
|
|
|
2928 |
metrics:
|
2929 |
- type: map_at_1
|
2930 |
value: 3.028
|
@@ -2991,6 +3317,8 @@ model-index:
|
|
2991 |
dataset:
|
2992 |
type: mteb/sickr-sts
|
2993 |
name: MTEB SICK-R
|
|
|
|
|
2994 |
metrics:
|
2995 |
- type: cos_sim_pearson
|
2996 |
value: 76.62983928119752
|
@@ -3009,6 +3337,8 @@ model-index:
|
|
3009 |
dataset:
|
3010 |
type: mteb/sts12-sts
|
3011 |
name: MTEB STS12
|
|
|
|
|
3012 |
metrics:
|
3013 |
- type: cos_sim_pearson
|
3014 |
value: 74.42679147085553
|
@@ -3027,6 +3357,8 @@ model-index:
|
|
3027 |
dataset:
|
3028 |
type: mteb/sts13-sts
|
3029 |
name: MTEB STS13
|
|
|
|
|
3030 |
metrics:
|
3031 |
- type: cos_sim_pearson
|
3032 |
value: 75.62472426599543
|
@@ -3045,6 +3377,8 @@ model-index:
|
|
3045 |
dataset:
|
3046 |
type: mteb/sts14-sts
|
3047 |
name: MTEB STS14
|
|
|
|
|
3048 |
metrics:
|
3049 |
- type: cos_sim_pearson
|
3050 |
value: 74.48227705407035
|
@@ -3063,6 +3397,8 @@ model-index:
|
|
3063 |
dataset:
|
3064 |
type: mteb/sts15-sts
|
3065 |
name: MTEB STS15
|
|
|
|
|
3066 |
metrics:
|
3067 |
- type: cos_sim_pearson
|
3068 |
value: 78.1566527175902
|
@@ -3081,6 +3417,8 @@ model-index:
|
|
3081 |
dataset:
|
3082 |
type: mteb/sts16-sts
|
3083 |
name: MTEB STS16
|
|
|
|
|
3084 |
metrics:
|
3085 |
- type: cos_sim_pearson
|
3086 |
value: 75.068454465977
|
@@ -3099,6 +3437,8 @@ model-index:
|
|
3099 |
dataset:
|
3100 |
type: mteb/sts17-crosslingual-sts
|
3101 |
name: MTEB STS17 (ko-ko)
|
|
|
|
|
3102 |
metrics:
|
3103 |
- type: cos_sim_pearson
|
3104 |
value: 39.43327289939437
|
@@ -3117,6 +3457,8 @@ model-index:
|
|
3117 |
dataset:
|
3118 |
type: mteb/sts17-crosslingual-sts
|
3119 |
name: MTEB STS17 (ar-ar)
|
|
|
|
|
3120 |
metrics:
|
3121 |
- type: cos_sim_pearson
|
3122 |
value: 55.54431928210687
|
@@ -3135,6 +3477,8 @@ model-index:
|
|
3135 |
dataset:
|
3136 |
type: mteb/sts17-crosslingual-sts
|
3137 |
name: MTEB STS17 (en-ar)
|
|
|
|
|
3138 |
metrics:
|
3139 |
- type: cos_sim_pearson
|
3140 |
value: 11.378463868809098
|
@@ -3153,6 +3497,8 @@ model-index:
|
|
3153 |
dataset:
|
3154 |
type: mteb/sts17-crosslingual-sts
|
3155 |
name: MTEB STS17 (en-de)
|
|
|
|
|
3156 |
metrics:
|
3157 |
- type: cos_sim_pearson
|
3158 |
value: 32.71403560929013
|
@@ -3171,6 +3517,8 @@ model-index:
|
|
3171 |
dataset:
|
3172 |
type: mteb/sts17-crosslingual-sts
|
3173 |
name: MTEB STS17 (en-en)
|
|
|
|
|
3174 |
metrics:
|
3175 |
- type: cos_sim_pearson
|
3176 |
value: 83.36340470799158
|
@@ -3189,6 +3537,8 @@ model-index:
|
|
3189 |
dataset:
|
3190 |
type: mteb/sts17-crosslingual-sts
|
3191 |
name: MTEB STS17 (en-tr)
|
|
|
|
|
3192 |
metrics:
|
3193 |
- type: cos_sim_pearson
|
3194 |
value: 1.9200044163754912
|
@@ -3207,6 +3557,8 @@ model-index:
|
|
3207 |
dataset:
|
3208 |
type: mteb/sts17-crosslingual-sts
|
3209 |
name: MTEB STS17 (es-en)
|
|
|
|
|
3210 |
metrics:
|
3211 |
- type: cos_sim_pearson
|
3212 |
value: 26.561262451099577
|
@@ -3225,6 +3577,8 @@ model-index:
|
|
3225 |
dataset:
|
3226 |
type: mteb/sts17-crosslingual-sts
|
3227 |
name: MTEB STS17 (es-es)
|
|
|
|
|
3228 |
metrics:
|
3229 |
- type: cos_sim_pearson
|
3230 |
value: 69.7544202001433
|
@@ -3243,6 +3597,8 @@ model-index:
|
|
3243 |
dataset:
|
3244 |
type: mteb/sts17-crosslingual-sts
|
3245 |
name: MTEB STS17 (fr-en)
|
|
|
|
|
3246 |
metrics:
|
3247 |
- type: cos_sim_pearson
|
3248 |
value: 27.70511842301491
|
@@ -3261,6 +3617,8 @@ model-index:
|
|
3261 |
dataset:
|
3262 |
type: mteb/sts17-crosslingual-sts
|
3263 |
name: MTEB STS17 (it-en)
|
|
|
|
|
3264 |
metrics:
|
3265 |
- type: cos_sim_pearson
|
3266 |
value: 24.226521799447692
|
@@ -3279,6 +3637,8 @@ model-index:
|
|
3279 |
dataset:
|
3280 |
type: mteb/sts17-crosslingual-sts
|
3281 |
name: MTEB STS17 (nl-en)
|
|
|
|
|
3282 |
metrics:
|
3283 |
- type: cos_sim_pearson
|
3284 |
value: 29.131412364061234
|
@@ -3297,6 +3657,8 @@ model-index:
|
|
3297 |
dataset:
|
3298 |
type: mteb/sts22-crosslingual-sts
|
3299 |
name: MTEB STS22 (en)
|
|
|
|
|
3300 |
metrics:
|
3301 |
- type: cos_sim_pearson
|
3302 |
value: 64.04750650962879
|
@@ -3315,6 +3677,8 @@ model-index:
|
|
3315 |
dataset:
|
3316 |
type: mteb/sts22-crosslingual-sts
|
3317 |
name: MTEB STS22 (de)
|
|
|
|
|
3318 |
metrics:
|
3319 |
- type: cos_sim_pearson
|
3320 |
value: 19.26519187000913
|
@@ -3333,6 +3697,8 @@ model-index:
|
|
3333 |
dataset:
|
3334 |
type: mteb/sts22-crosslingual-sts
|
3335 |
name: MTEB STS22 (es)
|
|
|
|
|
3336 |
metrics:
|
3337 |
- type: cos_sim_pearson
|
3338 |
value: 34.221261828226936
|
@@ -3351,6 +3717,8 @@ model-index:
|
|
3351 |
dataset:
|
3352 |
type: mteb/sts22-crosslingual-sts
|
3353 |
name: MTEB STS22 (pl)
|
|
|
|
|
3354 |
metrics:
|
3355 |
- type: cos_sim_pearson
|
3356 |
value: 3.620381732096531
|
@@ -3369,6 +3737,8 @@ model-index:
|
|
3369 |
dataset:
|
3370 |
type: mteb/sts22-crosslingual-sts
|
3371 |
name: MTEB STS22 (tr)
|
|
|
|
|
3372 |
metrics:
|
3373 |
- type: cos_sim_pearson
|
3374 |
value: 16.69489628726267
|
@@ -3387,6 +3757,8 @@ model-index:
|
|
3387 |
dataset:
|
3388 |
type: mteb/sts22-crosslingual-sts
|
3389 |
name: MTEB STS22 (ar)
|
|
|
|
|
3390 |
metrics:
|
3391 |
- type: cos_sim_pearson
|
3392 |
value: 9.134927430889528
|
@@ -3405,6 +3777,8 @@ model-index:
|
|
3405 |
dataset:
|
3406 |
type: mteb/sts22-crosslingual-sts
|
3407 |
name: MTEB STS22 (ru)
|
|
|
|
|
3408 |
metrics:
|
3409 |
- type: cos_sim_pearson
|
3410 |
value: 3.6386482942352085
|
@@ -3423,6 +3797,8 @@ model-index:
|
|
3423 |
dataset:
|
3424 |
type: mteb/sts22-crosslingual-sts
|
3425 |
name: MTEB STS22 (zh)
|
|
|
|
|
3426 |
metrics:
|
3427 |
- type: cos_sim_pearson
|
3428 |
value: 2.972091574908432
|
@@ -3441,6 +3817,8 @@ model-index:
|
|
3441 |
dataset:
|
3442 |
type: mteb/sts22-crosslingual-sts
|
3443 |
name: MTEB STS22 (fr)
|
|
|
|
|
3444 |
metrics:
|
3445 |
- type: cos_sim_pearson
|
3446 |
value: 54.4745185734135
|
@@ -3459,6 +3837,8 @@ model-index:
|
|
3459 |
dataset:
|
3460 |
type: mteb/sts22-crosslingual-sts
|
3461 |
name: MTEB STS22 (de-en)
|
|
|
|
|
3462 |
metrics:
|
3463 |
- type: cos_sim_pearson
|
3464 |
value: 49.37865412588201
|
@@ -3477,6 +3857,8 @@ model-index:
|
|
3477 |
dataset:
|
3478 |
type: mteb/sts22-crosslingual-sts
|
3479 |
name: MTEB STS22 (es-en)
|
|
|
|
|
3480 |
metrics:
|
3481 |
- type: cos_sim_pearson
|
3482 |
value: 44.925652392562135
|
@@ -3495,6 +3877,8 @@ model-index:
|
|
3495 |
dataset:
|
3496 |
type: mteb/sts22-crosslingual-sts
|
3497 |
name: MTEB STS22 (it)
|
|
|
|
|
3498 |
metrics:
|
3499 |
- type: cos_sim_pearson
|
3500 |
value: 45.241690321111875
|
@@ -3513,6 +3897,8 @@ model-index:
|
|
3513 |
dataset:
|
3514 |
type: mteb/sts22-crosslingual-sts
|
3515 |
name: MTEB STS22 (pl-en)
|
|
|
|
|
3516 |
metrics:
|
3517 |
- type: cos_sim_pearson
|
3518 |
value: 36.42138324083909
|
@@ -3531,6 +3917,8 @@ model-index:
|
|
3531 |
dataset:
|
3532 |
type: mteb/sts22-crosslingual-sts
|
3533 |
name: MTEB STS22 (zh-en)
|
|
|
|
|
3534 |
metrics:
|
3535 |
- type: cos_sim_pearson
|
3536 |
value: 26.55350664089358
|
@@ -3549,6 +3937,8 @@ model-index:
|
|
3549 |
dataset:
|
3550 |
type: mteb/sts22-crosslingual-sts
|
3551 |
name: MTEB STS22 (es-it)
|
|
|
|
|
3552 |
metrics:
|
3553 |
- type: cos_sim_pearson
|
3554 |
value: 38.54682179114309
|
@@ -3567,6 +3957,8 @@ model-index:
|
|
3567 |
dataset:
|
3568 |
type: mteb/sts22-crosslingual-sts
|
3569 |
name: MTEB STS22 (de-fr)
|
|
|
|
|
3570 |
metrics:
|
3571 |
- type: cos_sim_pearson
|
3572 |
value: 35.12956772546032
|
@@ -3585,6 +3977,8 @@ model-index:
|
|
3585 |
dataset:
|
3586 |
type: mteb/sts22-crosslingual-sts
|
3587 |
name: MTEB STS22 (de-pl)
|
|
|
|
|
3588 |
metrics:
|
3589 |
- type: cos_sim_pearson
|
3590 |
value: 30.507667380509634
|
@@ -3603,6 +3997,8 @@ model-index:
|
|
3603 |
dataset:
|
3604 |
type: mteb/sts22-crosslingual-sts
|
3605 |
name: MTEB STS22 (fr-pl)
|
|
|
|
|
3606 |
metrics:
|
3607 |
- type: cos_sim_pearson
|
3608 |
value: 71.10820459712156
|
@@ -3621,6 +4017,8 @@ model-index:
|
|
3621 |
dataset:
|
3622 |
type: mteb/stsbenchmark-sts
|
3623 |
name: MTEB STSBenchmark
|
|
|
|
|
3624 |
metrics:
|
3625 |
- type: cos_sim_pearson
|
3626 |
value: 76.53032504460737
|
@@ -3639,6 +4037,8 @@ model-index:
|
|
3639 |
dataset:
|
3640 |
type: mteb/scidocs-reranking
|
3641 |
name: MTEB SciDocsRR
|
|
|
|
|
3642 |
metrics:
|
3643 |
- type: map
|
3644 |
value: 71.33941904192648
|
@@ -3649,6 +4049,8 @@ model-index:
|
|
3649 |
dataset:
|
3650 |
type: scifact
|
3651 |
name: MTEB SciFact
|
|
|
|
|
3652 |
metrics:
|
3653 |
- type: map_at_1
|
3654 |
value: 43.333
|
@@ -3715,6 +4117,8 @@ model-index:
|
|
3715 |
dataset:
|
3716 |
type: mteb/sprintduplicatequestions-pairclassification
|
3717 |
name: MTEB SprintDuplicateQuestions
|
|
|
|
|
3718 |
metrics:
|
3719 |
- type: cos_sim_accuracy
|
3720 |
value: 99.7
|
@@ -3767,6 +4171,8 @@ model-index:
|
|
3767 |
dataset:
|
3768 |
type: mteb/stackexchange-clustering
|
3769 |
name: MTEB StackExchangeClustering
|
|
|
|
|
3770 |
metrics:
|
3771 |
- type: v_measure
|
3772 |
value: 52.74481093815175
|
@@ -3775,6 +4181,8 @@ model-index:
|
|
3775 |
dataset:
|
3776 |
type: mteb/stackexchange-clustering-p2p
|
3777 |
name: MTEB StackExchangeClusteringP2P
|
|
|
|
|
3778 |
metrics:
|
3779 |
- type: v_measure
|
3780 |
value: 32.65999453562101
|
@@ -3783,6 +4191,8 @@ model-index:
|
|
3783 |
dataset:
|
3784 |
type: mteb/stackoverflowdupquestions-reranking
|
3785 |
name: MTEB StackOverflowDupQuestions
|
|
|
|
|
3786 |
metrics:
|
3787 |
- type: map
|
3788 |
value: 44.74498464555465
|
@@ -3793,6 +4203,8 @@ model-index:
|
|
3793 |
dataset:
|
3794 |
type: mteb/summeval
|
3795 |
name: MTEB SummEval
|
|
|
|
|
3796 |
metrics:
|
3797 |
- type: cos_sim_pearson
|
3798 |
value: 29.5961822471627
|
@@ -3807,6 +4219,8 @@ model-index:
|
|
3807 |
dataset:
|
3808 |
type: trec-covid
|
3809 |
name: MTEB TRECCOVID
|
|
|
|
|
3810 |
metrics:
|
3811 |
- type: map_at_1
|
3812 |
value: 0.241
|
@@ -3873,6 +4287,8 @@ model-index:
|
|
3873 |
dataset:
|
3874 |
type: webis-touche2020
|
3875 |
name: MTEB Touche2020
|
|
|
|
|
3876 |
metrics:
|
3877 |
- type: map_at_1
|
3878 |
value: 2.782
|
@@ -3939,6 +4355,8 @@ model-index:
|
|
3939 |
dataset:
|
3940 |
type: mteb/toxic_conversations_50k
|
3941 |
name: MTEB ToxicConversationsClassification
|
|
|
|
|
3942 |
metrics:
|
3943 |
- type: accuracy
|
3944 |
value: 62.657999999999994
|
@@ -3951,6 +4369,8 @@ model-index:
|
|
3951 |
dataset:
|
3952 |
type: mteb/tweet_sentiment_extraction
|
3953 |
name: MTEB TweetSentimentExtractionClassification
|
|
|
|
|
3954 |
metrics:
|
3955 |
- type: accuracy
|
3956 |
value: 52.40803621958121
|
@@ -3961,6 +4381,8 @@ model-index:
|
|
3961 |
dataset:
|
3962 |
type: mteb/twentynewsgroups-clustering
|
3963 |
name: MTEB TwentyNewsgroupsClustering
|
|
|
|
|
3964 |
metrics:
|
3965 |
- type: v_measure
|
3966 |
value: 32.12697126747911
|
@@ -3969,6 +4391,8 @@ model-index:
|
|
3969 |
dataset:
|
3970 |
type: mteb/twittersemeval2015-pairclassification
|
3971 |
name: MTEB TwitterSemEval2015
|
|
|
|
|
3972 |
metrics:
|
3973 |
- type: cos_sim_accuracy
|
3974 |
value: 80.69976753889253
|
@@ -4021,6 +4445,8 @@ model-index:
|
|
4021 |
dataset:
|
4022 |
type: mteb/twitterurlcorpus-pairclassification
|
4023 |
name: MTEB TwitterURLCorpus
|
|
|
|
|
4024 |
metrics:
|
4025 |
- type: cos_sim_accuracy
|
4026 |
value: 86.90573213800597
|
|
|
13 |
dataset:
|
14 |
type: mteb/amazon_counterfactual
|
15 |
name: MTEB AmazonCounterfactualClassification (en)
|
16 |
+
config: en
|
17 |
+
split: test
|
18 |
metrics:
|
19 |
- type: accuracy
|
20 |
value: 61.23880597014926
|
|
|
27 |
dataset:
|
28 |
type: mteb/amazon_counterfactual
|
29 |
name: MTEB AmazonCounterfactualClassification (de)
|
30 |
+
config: de
|
31 |
+
split: test
|
32 |
metrics:
|
33 |
- type: accuracy
|
34 |
value: 56.88436830835117
|
|
|
41 |
dataset:
|
42 |
type: mteb/amazon_counterfactual
|
43 |
name: MTEB AmazonCounterfactualClassification (en-ext)
|
44 |
+
config: en-ext
|
45 |
+
split: test
|
46 |
metrics:
|
47 |
- type: accuracy
|
48 |
value: 58.27586206896551
|
|
|
55 |
dataset:
|
56 |
type: mteb/amazon_counterfactual
|
57 |
name: MTEB AmazonCounterfactualClassification (ja)
|
58 |
+
config: ja
|
59 |
+
split: test
|
60 |
metrics:
|
61 |
- type: accuracy
|
62 |
value: 54.64668094218415
|
|
|
69 |
dataset:
|
70 |
type: mteb/amazon_polarity
|
71 |
name: MTEB AmazonPolarityClassification
|
72 |
+
config: default
|
73 |
+
split: test
|
74 |
metrics:
|
75 |
- type: accuracy
|
76 |
value: 65.401225
|
|
|
83 |
dataset:
|
84 |
type: mteb/amazon_reviews_multi
|
85 |
name: MTEB AmazonReviewsClassification (en)
|
86 |
+
config: en
|
87 |
+
split: test
|
88 |
metrics:
|
89 |
- type: accuracy
|
90 |
value: 31.165999999999993
|
|
|
95 |
dataset:
|
96 |
type: mteb/amazon_reviews_multi
|
97 |
name: MTEB AmazonReviewsClassification (de)
|
98 |
+
config: de
|
99 |
+
split: test
|
100 |
metrics:
|
101 |
- type: accuracy
|
102 |
value: 24.79
|
|
|
107 |
dataset:
|
108 |
type: mteb/amazon_reviews_multi
|
109 |
name: MTEB AmazonReviewsClassification (es)
|
110 |
+
config: es
|
111 |
+
split: test
|
112 |
metrics:
|
113 |
- type: accuracy
|
114 |
value: 26.643999999999995
|
|
|
119 |
dataset:
|
120 |
type: mteb/amazon_reviews_multi
|
121 |
name: MTEB AmazonReviewsClassification (fr)
|
122 |
+
config: fr
|
123 |
+
split: test
|
124 |
metrics:
|
125 |
- type: accuracy
|
126 |
value: 26.386000000000003
|
|
|
131 |
dataset:
|
132 |
type: mteb/amazon_reviews_multi
|
133 |
name: MTEB AmazonReviewsClassification (ja)
|
134 |
+
config: ja
|
135 |
+
split: test
|
136 |
metrics:
|
137 |
- type: accuracy
|
138 |
value: 22.078000000000003
|
|
|
143 |
dataset:
|
144 |
type: mteb/amazon_reviews_multi
|
145 |
name: MTEB AmazonReviewsClassification (zh)
|
146 |
+
config: zh
|
147 |
+
split: test
|
148 |
metrics:
|
149 |
- type: accuracy
|
150 |
value: 24.274
|
|
|
155 |
dataset:
|
156 |
type: arguana
|
157 |
name: MTEB ArguAna
|
158 |
+
config: default
|
159 |
+
split: test
|
160 |
metrics:
|
161 |
- type: map_at_1
|
162 |
value: 22.404
|
|
|
223 |
dataset:
|
224 |
type: mteb/arxiv-clustering-p2p
|
225 |
name: MTEB ArxivClusteringP2P
|
226 |
+
config: default
|
227 |
+
split: test
|
228 |
metrics:
|
229 |
- type: v_measure
|
230 |
value: 39.70858340673288
|
|
|
233 |
dataset:
|
234 |
type: mteb/arxiv-clustering-s2s
|
235 |
name: MTEB ArxivClusteringS2S
|
236 |
+
config: default
|
237 |
+
split: test
|
238 |
metrics:
|
239 |
- type: v_measure
|
240 |
value: 28.242847713721048
|
|
|
243 |
dataset:
|
244 |
type: mteb/askubuntudupquestions-reranking
|
245 |
name: MTEB AskUbuntuDupQuestions
|
246 |
+
config: default
|
247 |
+
split: test
|
248 |
metrics:
|
249 |
- type: map
|
250 |
value: 55.83700395192393
|
|
|
255 |
dataset:
|
256 |
type: mteb/biosses-sts
|
257 |
name: MTEB BIOSSES
|
258 |
+
config: default
|
259 |
+
split: test
|
260 |
metrics:
|
261 |
- type: cos_sim_pearson
|
262 |
value: 79.25366801756223
|
|
|
275 |
dataset:
|
276 |
type: mteb/banking77
|
277 |
name: MTEB Banking77Classification
|
278 |
+
config: default
|
279 |
+
split: test
|
280 |
metrics:
|
281 |
- type: accuracy
|
282 |
value: 77.70454545454545
|
|
|
287 |
dataset:
|
288 |
type: mteb/biorxiv-clustering-p2p
|
289 |
name: MTEB BiorxivClusteringP2P
|
290 |
+
config: default
|
291 |
+
split: test
|
292 |
metrics:
|
293 |
- type: v_measure
|
294 |
value: 33.63260395543984
|
|
|
297 |
dataset:
|
298 |
type: mteb/biorxiv-clustering-s2s
|
299 |
name: MTEB BiorxivClusteringS2S
|
300 |
+
config: default
|
301 |
+
split: test
|
302 |
metrics:
|
303 |
- type: v_measure
|
304 |
value: 27.038042665369925
|
|
|
307 |
dataset:
|
308 |
type: BeIR/cqadupstack
|
309 |
name: MTEB CQADupstackAndroidRetrieval
|
310 |
+
config: default
|
311 |
+
split: test
|
312 |
metrics:
|
313 |
- type: map_at_1
|
314 |
value: 22.139
|
|
|
375 |
dataset:
|
376 |
type: BeIR/cqadupstack
|
377 |
name: MTEB CQADupstackEnglishRetrieval
|
378 |
+
config: default
|
379 |
+
split: test
|
380 |
metrics:
|
381 |
- type: map_at_1
|
382 |
value: 20.652
|
|
|
443 |
dataset:
|
444 |
type: BeIR/cqadupstack
|
445 |
name: MTEB CQADupstackGamingRetrieval
|
446 |
+
config: default
|
447 |
+
split: test
|
448 |
metrics:
|
449 |
- type: map_at_1
|
450 |
value: 25.180000000000003
|
|
|
511 |
dataset:
|
512 |
type: BeIR/cqadupstack
|
513 |
name: MTEB CQADupstackGisRetrieval
|
514 |
+
config: default
|
515 |
+
split: test
|
516 |
metrics:
|
517 |
- type: map_at_1
|
518 |
value: 16.303
|
|
|
579 |
dataset:
|
580 |
type: BeIR/cqadupstack
|
581 |
name: MTEB CQADupstackMathematicaRetrieval
|
582 |
+
config: default
|
583 |
+
split: test
|
584 |
metrics:
|
585 |
- type: map_at_1
|
586 |
value: 10.133000000000001
|
|
|
647 |
dataset:
|
648 |
type: BeIR/cqadupstack
|
649 |
name: MTEB CQADupstackPhysicsRetrieval
|
650 |
+
config: default
|
651 |
+
split: test
|
652 |
metrics:
|
653 |
- type: map_at_1
|
654 |
value: 19.991999999999997
|
|
|
715 |
dataset:
|
716 |
type: BeIR/cqadupstack
|
717 |
name: MTEB CQADupstackProgrammersRetrieval
|
718 |
+
config: default
|
719 |
+
split: test
|
720 |
metrics:
|
721 |
- type: map_at_1
|
722 |
value: 17.896
|
|
|
783 |
dataset:
|
784 |
type: BeIR/cqadupstack
|
785 |
name: MTEB CQADupstackRetrieval
|
786 |
+
config: default
|
787 |
+
split: test
|
788 |
metrics:
|
789 |
- type: map_at_1
|
790 |
value: 17.195166666666665
|
|
|
851 |
dataset:
|
852 |
type: BeIR/cqadupstack
|
853 |
name: MTEB CQADupstackStatsRetrieval
|
854 |
+
config: default
|
855 |
+
split: test
|
856 |
metrics:
|
857 |
- type: map_at_1
|
858 |
value: 16.779
|
|
|
919 |
dataset:
|
920 |
type: BeIR/cqadupstack
|
921 |
name: MTEB CQADupstackTexRetrieval
|
922 |
+
config: default
|
923 |
+
split: test
|
924 |
metrics:
|
925 |
- type: map_at_1
|
926 |
value: 9.279
|
|
|
987 |
dataset:
|
988 |
type: BeIR/cqadupstack
|
989 |
name: MTEB CQADupstackUnixRetrieval
|
990 |
+
config: default
|
991 |
+
split: test
|
992 |
metrics:
|
993 |
- type: map_at_1
|
994 |
value: 16.36
|
|
|
1055 |
dataset:
|
1056 |
type: BeIR/cqadupstack
|
1057 |
name: MTEB CQADupstackWebmastersRetrieval
|
1058 |
+
config: default
|
1059 |
+
split: test
|
1060 |
metrics:
|
1061 |
- type: map_at_1
|
1062 |
value: 17.39
|
|
|
1123 |
dataset:
|
1124 |
type: BeIR/cqadupstack
|
1125 |
name: MTEB CQADupstackWordpressRetrieval
|
1126 |
+
config: default
|
1127 |
+
split: test
|
1128 |
metrics:
|
1129 |
- type: map_at_1
|
1130 |
value: 14.238999999999999
|
|
|
1191 |
dataset:
|
1192 |
type: climate-fever
|
1193 |
name: MTEB ClimateFEVER
|
1194 |
+
config: default
|
1195 |
+
split: test
|
1196 |
metrics:
|
1197 |
- type: map_at_1
|
1198 |
value: 8.828
|
|
|
1259 |
dataset:
|
1260 |
type: dbpedia-entity
|
1261 |
name: MTEB DBPedia
|
1262 |
+
config: default
|
1263 |
+
split: test
|
1264 |
metrics:
|
1265 |
- type: map_at_1
|
1266 |
value: 5.586
|
|
|
1327 |
dataset:
|
1328 |
type: mteb/emotion
|
1329 |
name: MTEB EmotionClassification
|
1330 |
+
config: default
|
1331 |
+
split: test
|
1332 |
metrics:
|
1333 |
- type: accuracy
|
1334 |
value: 39.075
|
|
|
1339 |
dataset:
|
1340 |
type: fever
|
1341 |
name: MTEB FEVER
|
1342 |
+
config: default
|
1343 |
+
split: test
|
1344 |
metrics:
|
1345 |
- type: map_at_1
|
1346 |
value: 43.519999999999996
|
|
|
1407 |
dataset:
|
1408 |
type: fiqa
|
1409 |
name: MTEB FiQA2018
|
1410 |
+
config: default
|
1411 |
+
split: test
|
1412 |
metrics:
|
1413 |
- type: map_at_1
|
1414 |
value: 9.549000000000001
|
|
|
1475 |
dataset:
|
1476 |
type: hotpotqa
|
1477 |
name: MTEB HotpotQA
|
1478 |
+
config: default
|
1479 |
+
split: test
|
1480 |
metrics:
|
1481 |
- type: map_at_1
|
1482 |
value: 25.544
|
|
|
1543 |
dataset:
|
1544 |
type: mteb/imdb
|
1545 |
name: MTEB ImdbClassification
|
1546 |
+
config: default
|
1547 |
+
split: test
|
1548 |
metrics:
|
1549 |
- type: accuracy
|
1550 |
value: 58.6696
|
|
|
1557 |
dataset:
|
1558 |
type: msmarco
|
1559 |
name: MTEB MSMARCO
|
1560 |
+
config: default
|
1561 |
+
split: validation
|
1562 |
metrics:
|
1563 |
- type: map_at_1
|
1564 |
value: 14.442
|
|
|
1625 |
dataset:
|
1626 |
type: mteb/mtop_domain
|
1627 |
name: MTEB MTOPDomainClassification (en)
|
1628 |
+
config: en
|
1629 |
+
split: test
|
1630 |
metrics:
|
1631 |
- type: accuracy
|
1632 |
value: 86.95622435020519
|
|
|
1637 |
dataset:
|
1638 |
type: mteb/mtop_domain
|
1639 |
name: MTEB MTOPDomainClassification (de)
|
1640 |
+
config: de
|
1641 |
+
split: test
|
1642 |
metrics:
|
1643 |
- type: accuracy
|
1644 |
value: 62.73034657650043
|
|
|
1649 |
dataset:
|
1650 |
type: mteb/mtop_domain
|
1651 |
name: MTEB MTOPDomainClassification (es)
|
1652 |
+
config: es
|
1653 |
+
split: test
|
1654 |
metrics:
|
1655 |
- type: accuracy
|
1656 |
value: 67.54503002001334
|
|
|
1661 |
dataset:
|
1662 |
type: mteb/mtop_domain
|
1663 |
name: MTEB MTOPDomainClassification (fr)
|
1664 |
+
config: fr
|
1665 |
+
split: test
|
1666 |
metrics:
|
1667 |
- type: accuracy
|
1668 |
value: 65.35233322893829
|
|
|
1673 |
dataset:
|
1674 |
type: mteb/mtop_domain
|
1675 |
name: MTEB MTOPDomainClassification (hi)
|
1676 |
+
config: hi
|
1677 |
+
split: test
|
1678 |
metrics:
|
1679 |
- type: accuracy
|
1680 |
value: 45.37110075295806
|
|
|
1685 |
dataset:
|
1686 |
type: mteb/mtop_domain
|
1687 |
name: MTEB MTOPDomainClassification (th)
|
1688 |
+
config: th
|
1689 |
+
split: test
|
1690 |
metrics:
|
1691 |
- type: accuracy
|
1692 |
value: 55.276672694394215
|
|
|
1697 |
dataset:
|
1698 |
type: mteb/mtop_intent
|
1699 |
name: MTEB MTOPIntentClassification (en)
|
1700 |
+
config: en
|
1701 |
+
split: test
|
1702 |
metrics:
|
1703 |
- type: accuracy
|
1704 |
value: 62.25262197902417
|
|
|
1709 |
dataset:
|
1710 |
type: mteb/mtop_intent
|
1711 |
name: MTEB MTOPIntentClassification (de)
|
1712 |
+
config: de
|
1713 |
+
split: test
|
1714 |
metrics:
|
1715 |
- type: accuracy
|
1716 |
value: 49.56043956043956
|
|
|
1721 |
dataset:
|
1722 |
type: mteb/mtop_intent
|
1723 |
name: MTEB MTOPIntentClassification (es)
|
1724 |
+
config: es
|
1725 |
+
split: test
|
1726 |
metrics:
|
1727 |
- type: accuracy
|
1728 |
value: 49.93995997331555
|
|
|
1733 |
dataset:
|
1734 |
type: mteb/mtop_intent
|
1735 |
name: MTEB MTOPIntentClassification (fr)
|
1736 |
+
config: fr
|
1737 |
+
split: test
|
1738 |
metrics:
|
1739 |
- type: accuracy
|
1740 |
value: 46.32947071719386
|
|
|
1745 |
dataset:
|
1746 |
type: mteb/mtop_intent
|
1747 |
name: MTEB MTOPIntentClassification (hi)
|
1748 |
+
config: hi
|
1749 |
+
split: test
|
1750 |
metrics:
|
1751 |
- type: accuracy
|
1752 |
value: 32.208676945141626
|
|
|
1757 |
dataset:
|
1758 |
type: mteb/mtop_intent
|
1759 |
name: MTEB MTOPIntentClassification (th)
|
1760 |
+
config: th
|
1761 |
+
split: test
|
1762 |
metrics:
|
1763 |
- type: accuracy
|
1764 |
value: 43.627486437613015
|
|
|
1769 |
dataset:
|
1770 |
type: mteb/amazon_massive_intent
|
1771 |
name: MTEB MassiveIntentClassification (af)
|
1772 |
+
config: af
|
1773 |
+
split: test
|
1774 |
metrics:
|
1775 |
- type: accuracy
|
1776 |
value: 40.548083389374575
|
|
|
1781 |
dataset:
|
1782 |
type: mteb/amazon_massive_intent
|
1783 |
name: MTEB MassiveIntentClassification (am)
|
1784 |
+
config: am
|
1785 |
+
split: test
|
1786 |
metrics:
|
1787 |
- type: accuracy
|
1788 |
value: 24.18291862811029
|
|
|
1793 |
dataset:
|
1794 |
type: mteb/amazon_massive_intent
|
1795 |
name: MTEB MassiveIntentClassification (ar)
|
1796 |
+
config: ar
|
1797 |
+
split: test
|
1798 |
metrics:
|
1799 |
- type: accuracy
|
1800 |
value: 30.134498991257562
|
|
|
1805 |
dataset:
|
1806 |
type: mteb/amazon_massive_intent
|
1807 |
name: MTEB MassiveIntentClassification (az)
|
1808 |
+
config: az
|
1809 |
+
split: test
|
1810 |
metrics:
|
1811 |
- type: accuracy
|
1812 |
value: 35.88433086751849
|
|
|
1817 |
dataset:
|
1818 |
type: mteb/amazon_massive_intent
|
1819 |
name: MTEB MassiveIntentClassification (bn)
|
1820 |
+
config: bn
|
1821 |
+
split: test
|
1822 |
metrics:
|
1823 |
- type: accuracy
|
1824 |
value: 29.17283120376597
|
|
|
1829 |
dataset:
|
1830 |
type: mteb/amazon_massive_intent
|
1831 |
name: MTEB MassiveIntentClassification (cy)
|
1832 |
+
config: cy
|
1833 |
+
split: test
|
1834 |
metrics:
|
1835 |
- type: accuracy
|
1836 |
value: 41.788836583725626
|
|
|
1841 |
dataset:
|
1842 |
type: mteb/amazon_massive_intent
|
1843 |
name: MTEB MassiveIntentClassification (da)
|
1844 |
+
config: da
|
1845 |
+
split: test
|
1846 |
metrics:
|
1847 |
- type: accuracy
|
1848 |
value: 44.176193678547406
|
|
|
1853 |
dataset:
|
1854 |
type: mteb/amazon_massive_intent
|
1855 |
name: MTEB MassiveIntentClassification (de)
|
1856 |
+
config: de
|
1857 |
+
split: test
|
1858 |
metrics:
|
1859 |
- type: accuracy
|
1860 |
value: 42.07464694014795
|
|
|
1865 |
dataset:
|
1866 |
type: mteb/amazon_massive_intent
|
1867 |
name: MTEB MassiveIntentClassification (el)
|
1868 |
+
config: el
|
1869 |
+
split: test
|
1870 |
metrics:
|
1871 |
- type: accuracy
|
1872 |
value: 36.254203093476804
|
|
|
1877 |
dataset:
|
1878 |
type: mteb/amazon_massive_intent
|
1879 |
name: MTEB MassiveIntentClassification (en)
|
1880 |
+
config: en
|
1881 |
+
split: test
|
1882 |
metrics:
|
1883 |
- type: accuracy
|
1884 |
value: 61.40887693342301
|
|
|
1889 |
dataset:
|
1890 |
type: mteb/amazon_massive_intent
|
1891 |
name: MTEB MassiveIntentClassification (es)
|
1892 |
+
config: es
|
1893 |
+
split: test
|
1894 |
metrics:
|
1895 |
- type: accuracy
|
1896 |
value: 42.679892400807
|
|
|
1901 |
dataset:
|
1902 |
type: mteb/amazon_massive_intent
|
1903 |
name: MTEB MassiveIntentClassification (fa)
|
1904 |
+
config: fa
|
1905 |
+
split: test
|
1906 |
metrics:
|
1907 |
- type: accuracy
|
1908 |
value: 35.59179556153329
|
|
|
1913 |
dataset:
|
1914 |
type: mteb/amazon_massive_intent
|
1915 |
name: MTEB MassiveIntentClassification (fi)
|
1916 |
+
config: fi
|
1917 |
+
split: test
|
1918 |
metrics:
|
1919 |
- type: accuracy
|
1920 |
value: 40.036987222595826
|
|
|
1925 |
dataset:
|
1926 |
type: mteb/amazon_massive_intent
|
1927 |
name: MTEB MassiveIntentClassification (fr)
|
1928 |
+
config: fr
|
1929 |
+
split: test
|
1930 |
metrics:
|
1931 |
- type: accuracy
|
1932 |
value: 43.43981170141224
|
|
|
1937 |
dataset:
|
1938 |
type: mteb/amazon_massive_intent
|
1939 |
name: MTEB MassiveIntentClassification (he)
|
1940 |
+
config: he
|
1941 |
+
split: test
|
1942 |
metrics:
|
1943 |
- type: accuracy
|
1944 |
value: 31.593813046402154
|
|
|
1949 |
dataset:
|
1950 |
type: mteb/amazon_massive_intent
|
1951 |
name: MTEB MassiveIntentClassification (hi)
|
1952 |
+
config: hi
|
1953 |
+
split: test
|
1954 |
metrics:
|
1955 |
- type: accuracy
|
1956 |
value: 27.044384667114997
|
|
|
1961 |
dataset:
|
1962 |
type: mteb/amazon_massive_intent
|
1963 |
name: MTEB MassiveIntentClassification (hu)
|
1964 |
+
config: hu
|
1965 |
+
split: test
|
1966 |
metrics:
|
1967 |
- type: accuracy
|
1968 |
value: 38.453261600538
|
|
|
1973 |
dataset:
|
1974 |
type: mteb/amazon_massive_intent
|
1975 |
name: MTEB MassiveIntentClassification (hy)
|
1976 |
+
config: hy
|
1977 |
+
split: test
|
1978 |
metrics:
|
1979 |
- type: accuracy
|
1980 |
value: 27.979152656355076
|
|
|
1985 |
dataset:
|
1986 |
type: mteb/amazon_massive_intent
|
1987 |
name: MTEB MassiveIntentClassification (id)
|
1988 |
+
config: id
|
1989 |
+
split: test
|
1990 |
metrics:
|
1991 |
- type: accuracy
|
1992 |
value: 43.97108271687963
|
|
|
1997 |
dataset:
|
1998 |
type: mteb/amazon_massive_intent
|
1999 |
name: MTEB MassiveIntentClassification (is)
|
2000 |
+
config: is
|
2001 |
+
split: test
|
2002 |
metrics:
|
2003 |
- type: accuracy
|
2004 |
value: 40.302622730329524
|
|
|
2009 |
dataset:
|
2010 |
type: mteb/amazon_massive_intent
|
2011 |
name: MTEB MassiveIntentClassification (it)
|
2012 |
+
config: it
|
2013 |
+
split: test
|
2014 |
metrics:
|
2015 |
- type: accuracy
|
2016 |
value: 45.474108944182916
|
|
|
2021 |
dataset:
|
2022 |
type: mteb/amazon_massive_intent
|
2023 |
name: MTEB MassiveIntentClassification (ja)
|
2024 |
+
config: ja
|
2025 |
+
split: test
|
2026 |
metrics:
|
2027 |
- type: accuracy
|
2028 |
value: 45.60860793544048
|
|
|
2033 |
dataset:
|
2034 |
type: mteb/amazon_massive_intent
|
2035 |
name: MTEB MassiveIntentClassification (jv)
|
2036 |
+
config: jv
|
2037 |
+
split: test
|
2038 |
metrics:
|
2039 |
- type: accuracy
|
2040 |
value: 38.668459986550104
|
|
|
2045 |
dataset:
|
2046 |
type: mteb/amazon_massive_intent
|
2047 |
name: MTEB MassiveIntentClassification (ka)
|
2048 |
+
config: ka
|
2049 |
+
split: test
|
2050 |
metrics:
|
2051 |
- type: accuracy
|
2052 |
value: 25.6523201075992
|
|
|
2057 |
dataset:
|
2058 |
type: mteb/amazon_massive_intent
|
2059 |
name: MTEB MassiveIntentClassification (km)
|
2060 |
+
config: km
|
2061 |
+
split: test
|
2062 |
metrics:
|
2063 |
- type: accuracy
|
2064 |
value: 28.295225285810353
|
|
|
2069 |
dataset:
|
2070 |
type: mteb/amazon_massive_intent
|
2071 |
name: MTEB MassiveIntentClassification (kn)
|
2072 |
+
config: kn
|
2073 |
+
split: test
|
2074 |
metrics:
|
2075 |
- type: accuracy
|
2076 |
value: 23.480161398789505
|
|
|
2081 |
dataset:
|
2082 |
type: mteb/amazon_massive_intent
|
2083 |
name: MTEB MassiveIntentClassification (ko)
|
2084 |
+
config: ko
|
2085 |
+
split: test
|
2086 |
metrics:
|
2087 |
- type: accuracy
|
2088 |
value: 36.55682582380632
|
|
|
2093 |
dataset:
|
2094 |
type: mteb/amazon_massive_intent
|
2095 |
name: MTEB MassiveIntentClassification (lv)
|
2096 |
+
config: lv
|
2097 |
+
split: test
|
2098 |
metrics:
|
2099 |
- type: accuracy
|
2100 |
value: 41.84936112979153
|
|
|
2105 |
dataset:
|
2106 |
type: mteb/amazon_massive_intent
|
2107 |
name: MTEB MassiveIntentClassification (ml)
|
2108 |
+
config: ml
|
2109 |
+
split: test
|
2110 |
metrics:
|
2111 |
- type: accuracy
|
2112 |
value: 24.90921318090114
|
|
|
2117 |
dataset:
|
2118 |
type: mteb/amazon_massive_intent
|
2119 |
name: MTEB MassiveIntentClassification (mn)
|
2120 |
+
config: mn
|
2121 |
+
split: test
|
2122 |
metrics:
|
2123 |
- type: accuracy
|
2124 |
value: 29.86213853396099
|
|
|
2129 |
dataset:
|
2130 |
type: mteb/amazon_massive_intent
|
2131 |
name: MTEB MassiveIntentClassification (ms)
|
2132 |
+
config: ms
|
2133 |
+
split: test
|
2134 |
metrics:
|
2135 |
- type: accuracy
|
2136 |
value: 42.42098184263618
|
|
|
2141 |
dataset:
|
2142 |
type: mteb/amazon_massive_intent
|
2143 |
name: MTEB MassiveIntentClassification (my)
|
2144 |
+
config: my
|
2145 |
+
split: test
|
2146 |
metrics:
|
2147 |
- type: accuracy
|
2148 |
value: 25.131136516476126
|
|
|
2153 |
dataset:
|
2154 |
type: mteb/amazon_massive_intent
|
2155 |
name: MTEB MassiveIntentClassification (nb)
|
2156 |
+
config: nb
|
2157 |
+
split: test
|
2158 |
metrics:
|
2159 |
- type: accuracy
|
2160 |
value: 39.81506388702084
|
|
|
2165 |
dataset:
|
2166 |
type: mteb/amazon_massive_intent
|
2167 |
name: MTEB MassiveIntentClassification (nl)
|
2168 |
+
config: nl
|
2169 |
+
split: test
|
2170 |
metrics:
|
2171 |
- type: accuracy
|
2172 |
value: 43.62138533960995
|
|
|
2177 |
dataset:
|
2178 |
type: mteb/amazon_massive_intent
|
2179 |
name: MTEB MassiveIntentClassification (pl)
|
2180 |
+
config: pl
|
2181 |
+
split: test
|
2182 |
metrics:
|
2183 |
- type: accuracy
|
2184 |
value: 42.19569603227976
|
|
|
2189 |
dataset:
|
2190 |
type: mteb/amazon_massive_intent
|
2191 |
name: MTEB MassiveIntentClassification (pt)
|
2192 |
+
config: pt
|
2193 |
+
split: test
|
2194 |
metrics:
|
2195 |
- type: accuracy
|
2196 |
value: 45.20847343644923
|
|
|
2201 |
dataset:
|
2202 |
type: mteb/amazon_massive_intent
|
2203 |
name: MTEB MassiveIntentClassification (ro)
|
2204 |
+
config: ro
|
2205 |
+
split: test
|
2206 |
metrics:
|
2207 |
- type: accuracy
|
2208 |
value: 41.80901143241426
|
|
|
2213 |
dataset:
|
2214 |
type: mteb/amazon_massive_intent
|
2215 |
name: MTEB MassiveIntentClassification (ru)
|
2216 |
+
config: ru
|
2217 |
+
split: test
|
2218 |
metrics:
|
2219 |
- type: accuracy
|
2220 |
value: 35.96839273705447
|
|
|
2225 |
dataset:
|
2226 |
type: mteb/amazon_massive_intent
|
2227 |
name: MTEB MassiveIntentClassification (sl)
|
2228 |
+
config: sl
|
2229 |
+
split: test
|
2230 |
metrics:
|
2231 |
- type: accuracy
|
2232 |
value: 40.60524546065905
|
|
|
2237 |
dataset:
|
2238 |
type: mteb/amazon_massive_intent
|
2239 |
name: MTEB MassiveIntentClassification (sq)
|
2240 |
+
config: sq
|
2241 |
+
split: test
|
2242 |
metrics:
|
2243 |
- type: accuracy
|
2244 |
value: 42.75722932078009
|
|
|
2249 |
dataset:
|
2250 |
type: mteb/amazon_massive_intent
|
2251 |
name: MTEB MassiveIntentClassification (sv)
|
2252 |
+
config: sv
|
2253 |
+
split: test
|
2254 |
metrics:
|
2255 |
- type: accuracy
|
2256 |
value: 42.347007397444514
|
|
|
2261 |
dataset:
|
2262 |
type: mteb/amazon_massive_intent
|
2263 |
name: MTEB MassiveIntentClassification (sw)
|
2264 |
+
config: sw
|
2265 |
+
split: test
|
2266 |
metrics:
|
2267 |
- type: accuracy
|
2268 |
value: 41.12306657700067
|
|
|
2273 |
dataset:
|
2274 |
type: mteb/amazon_massive_intent
|
2275 |
name: MTEB MassiveIntentClassification (ta)
|
2276 |
+
config: ta
|
2277 |
+
split: test
|
2278 |
metrics:
|
2279 |
- type: accuracy
|
2280 |
value: 24.603227975790183
|
|
|
2285 |
dataset:
|
2286 |
type: mteb/amazon_massive_intent
|
2287 |
name: MTEB MassiveIntentClassification (te)
|
2288 |
+
config: te
|
2289 |
+
split: test
|
2290 |
metrics:
|
2291 |
- type: accuracy
|
2292 |
value: 25.03698722259583
|
|
|
2297 |
dataset:
|
2298 |
type: mteb/amazon_massive_intent
|
2299 |
name: MTEB MassiveIntentClassification (th)
|
2300 |
+
config: th
|
2301 |
+
split: test
|
2302 |
metrics:
|
2303 |
- type: accuracy
|
2304 |
value: 35.40013449899126
|
|
|
2309 |
dataset:
|
2310 |
type: mteb/amazon_massive_intent
|
2311 |
name: MTEB MassiveIntentClassification (tl)
|
2312 |
+
config: tl
|
2313 |
+
split: test
|
2314 |
metrics:
|
2315 |
- type: accuracy
|
2316 |
value: 41.19031607262945
|
|
|
2321 |
dataset:
|
2322 |
type: mteb/amazon_massive_intent
|
2323 |
name: MTEB MassiveIntentClassification (tr)
|
2324 |
+
config: tr
|
2325 |
+
split: test
|
2326 |
metrics:
|
2327 |
- type: accuracy
|
2328 |
value: 36.405514458641555
|
|
|
2333 |
dataset:
|
2334 |
type: mteb/amazon_massive_intent
|
2335 |
name: MTEB MassiveIntentClassification (ur)
|
2336 |
+
config: ur
|
2337 |
+
split: test
|
2338 |
metrics:
|
2339 |
- type: accuracy
|
2340 |
value: 25.934767989240076
|
|
|
2345 |
dataset:
|
2346 |
type: mteb/amazon_massive_intent
|
2347 |
name: MTEB MassiveIntentClassification (vi)
|
2348 |
+
config: vi
|
2349 |
+
split: test
|
2350 |
metrics:
|
2351 |
- type: accuracy
|
2352 |
value: 38.79959650302622
|
|
|
2357 |
dataset:
|
2358 |
type: mteb/amazon_massive_intent
|
2359 |
name: MTEB MassiveIntentClassification (zh-CN)
|
2360 |
+
config: zh-CN
|
2361 |
+
split: test
|
2362 |
metrics:
|
2363 |
- type: accuracy
|
2364 |
value: 46.244115669132476
|
|
|
2369 |
dataset:
|
2370 |
type: mteb/amazon_massive_intent
|
2371 |
name: MTEB MassiveIntentClassification (zh-TW)
|
2372 |
+
config: zh-TW
|
2373 |
+
split: test
|
2374 |
metrics:
|
2375 |
- type: accuracy
|
2376 |
value: 42.30665770006724
|
|
|
2381 |
dataset:
|
2382 |
type: mteb/amazon_massive_scenario
|
2383 |
name: MTEB MassiveScenarioClassification (af)
|
2384 |
+
config: af
|
2385 |
+
split: test
|
2386 |
metrics:
|
2387 |
- type: accuracy
|
2388 |
value: 43.2481506388702
|
|
|
2393 |
dataset:
|
2394 |
type: mteb/amazon_massive_scenario
|
2395 |
name: MTEB MassiveScenarioClassification (am)
|
2396 |
+
config: am
|
2397 |
+
split: test
|
2398 |
metrics:
|
2399 |
- type: accuracy
|
2400 |
value: 25.30262273032952
|
|
|
2405 |
dataset:
|
2406 |
type: mteb/amazon_massive_scenario
|
2407 |
name: MTEB MassiveScenarioClassification (ar)
|
2408 |
+
config: ar
|
2409 |
+
split: test
|
2410 |
metrics:
|
2411 |
- type: accuracy
|
2412 |
value: 32.07128446536651
|
|
|
2417 |
dataset:
|
2418 |
type: mteb/amazon_massive_scenario
|
2419 |
name: MTEB MassiveScenarioClassification (az)
|
2420 |
+
config: az
|
2421 |
+
split: test
|
2422 |
metrics:
|
2423 |
- type: accuracy
|
2424 |
value: 36.681237390719566
|
|
|
2429 |
dataset:
|
2430 |
type: mteb/amazon_massive_scenario
|
2431 |
name: MTEB MassiveScenarioClassification (bn)
|
2432 |
+
config: bn
|
2433 |
+
split: test
|
2434 |
metrics:
|
2435 |
- type: accuracy
|
2436 |
value: 29.56624075319435
|
|
|
2441 |
dataset:
|
2442 |
type: mteb/amazon_massive_scenario
|
2443 |
name: MTEB MassiveScenarioClassification (cy)
|
2444 |
+
config: cy
|
2445 |
+
split: test
|
2446 |
metrics:
|
2447 |
- type: accuracy
|
2448 |
value: 42.1049092131809
|
|
|
2453 |
dataset:
|
2454 |
type: mteb/amazon_massive_scenario
|
2455 |
name: MTEB MassiveScenarioClassification (da)
|
2456 |
+
config: da
|
2457 |
+
split: test
|
2458 |
metrics:
|
2459 |
- type: accuracy
|
2460 |
value: 45.44384667114997
|
|
|
2465 |
dataset:
|
2466 |
type: mteb/amazon_massive_scenario
|
2467 |
name: MTEB MassiveScenarioClassification (de)
|
2468 |
+
config: de
|
2469 |
+
split: test
|
2470 |
metrics:
|
2471 |
- type: accuracy
|
2472 |
value: 43.211163416274374
|
|
|
2477 |
dataset:
|
2478 |
type: mteb/amazon_massive_scenario
|
2479 |
name: MTEB MassiveScenarioClassification (el)
|
2480 |
+
config: el
|
2481 |
+
split: test
|
2482 |
metrics:
|
2483 |
- type: accuracy
|
2484 |
value: 36.503026227303295
|
|
|
2489 |
dataset:
|
2490 |
type: mteb/amazon_massive_scenario
|
2491 |
name: MTEB MassiveScenarioClassification (en)
|
2492 |
+
config: en
|
2493 |
+
split: test
|
2494 |
metrics:
|
2495 |
- type: accuracy
|
2496 |
value: 69.73772696704773
|
|
|
2501 |
dataset:
|
2502 |
type: mteb/amazon_massive_scenario
|
2503 |
name: MTEB MassiveScenarioClassification (es)
|
2504 |
+
config: es
|
2505 |
+
split: test
|
2506 |
metrics:
|
2507 |
- type: accuracy
|
2508 |
value: 44.078681909885674
|
|
|
2513 |
dataset:
|
2514 |
type: mteb/amazon_massive_scenario
|
2515 |
name: MTEB MassiveScenarioClassification (fa)
|
2516 |
+
config: fa
|
2517 |
+
split: test
|
2518 |
metrics:
|
2519 |
- type: accuracy
|
2520 |
value: 32.61264290517821
|
|
|
2525 |
dataset:
|
2526 |
type: mteb/amazon_massive_scenario
|
2527 |
name: MTEB MassiveScenarioClassification (fi)
|
2528 |
+
config: fi
|
2529 |
+
split: test
|
2530 |
metrics:
|
2531 |
- type: accuracy
|
2532 |
value: 40.35642232683255
|
|
|
2537 |
dataset:
|
2538 |
type: mteb/amazon_massive_scenario
|
2539 |
name: MTEB MassiveScenarioClassification (fr)
|
2540 |
+
config: fr
|
2541 |
+
split: test
|
2542 |
metrics:
|
2543 |
- type: accuracy
|
2544 |
value: 45.06724949562878
|
|
|
2549 |
dataset:
|
2550 |
type: mteb/amazon_massive_scenario
|
2551 |
name: MTEB MassiveScenarioClassification (he)
|
2552 |
+
config: he
|
2553 |
+
split: test
|
2554 |
metrics:
|
2555 |
- type: accuracy
|
2556 |
value: 32.178883658372555
|
|
|
2561 |
dataset:
|
2562 |
type: mteb/amazon_massive_scenario
|
2563 |
name: MTEB MassiveScenarioClassification (hi)
|
2564 |
+
config: hi
|
2565 |
+
split: test
|
2566 |
metrics:
|
2567 |
- type: accuracy
|
2568 |
value: 26.903160726294555
|
|
|
2573 |
dataset:
|
2574 |
type: mteb/amazon_massive_scenario
|
2575 |
name: MTEB MassiveScenarioClassification (hu)
|
2576 |
+
config: hu
|
2577 |
+
split: test
|
2578 |
metrics:
|
2579 |
- type: accuracy
|
2580 |
value: 40.379959650302624
|
|
|
2585 |
dataset:
|
2586 |
type: mteb/amazon_massive_scenario
|
2587 |
name: MTEB MassiveScenarioClassification (hy)
|
2588 |
+
config: hy
|
2589 |
+
split: test
|
2590 |
metrics:
|
2591 |
- type: accuracy
|
2592 |
value: 28.375924680564896
|
|
|
2597 |
dataset:
|
2598 |
type: mteb/amazon_massive_scenario
|
2599 |
name: MTEB MassiveScenarioClassification (id)
|
2600 |
+
config: id
|
2601 |
+
split: test
|
2602 |
metrics:
|
2603 |
- type: accuracy
|
2604 |
value: 44.361129791526565
|
|
|
2609 |
dataset:
|
2610 |
type: mteb/amazon_massive_scenario
|
2611 |
name: MTEB MassiveScenarioClassification (is)
|
2612 |
+
config: is
|
2613 |
+
split: test
|
2614 |
metrics:
|
2615 |
- type: accuracy
|
2616 |
value: 39.290517821116346
|
|
|
2621 |
dataset:
|
2622 |
type: mteb/amazon_massive_scenario
|
2623 |
name: MTEB MassiveScenarioClassification (it)
|
2624 |
+
config: it
|
2625 |
+
split: test
|
2626 |
metrics:
|
2627 |
- type: accuracy
|
2628 |
value: 46.4694014794889
|
|
|
2633 |
dataset:
|
2634 |
type: mteb/amazon_massive_scenario
|
2635 |
name: MTEB MassiveScenarioClassification (ja)
|
2636 |
+
config: ja
|
2637 |
+
split: test
|
2638 |
metrics:
|
2639 |
- type: accuracy
|
2640 |
value: 46.25756556825824
|
|
|
2645 |
dataset:
|
2646 |
type: mteb/amazon_massive_scenario
|
2647 |
name: MTEB MassiveScenarioClassification (jv)
|
2648 |
+
config: jv
|
2649 |
+
split: test
|
2650 |
metrics:
|
2651 |
- type: accuracy
|
2652 |
value: 41.12642905178212
|
|
|
2657 |
dataset:
|
2658 |
type: mteb/amazon_massive_scenario
|
2659 |
name: MTEB MassiveScenarioClassification (ka)
|
2660 |
+
config: ka
|
2661 |
+
split: test
|
2662 |
metrics:
|
2663 |
- type: accuracy
|
2664 |
value: 24.72763954270343
|
|
|
2669 |
dataset:
|
2670 |
type: mteb/amazon_massive_scenario
|
2671 |
name: MTEB MassiveScenarioClassification (km)
|
2672 |
+
config: km
|
2673 |
+
split: test
|
2674 |
metrics:
|
2675 |
- type: accuracy
|
2676 |
value: 29.741089441829182
|
|
|
2681 |
dataset:
|
2682 |
type: mteb/amazon_massive_scenario
|
2683 |
name: MTEB MassiveScenarioClassification (kn)
|
2684 |
+
config: kn
|
2685 |
+
split: test
|
2686 |
metrics:
|
2687 |
- type: accuracy
|
2688 |
value: 23.850033624747816
|
|
|
2693 |
dataset:
|
2694 |
type: mteb/amazon_massive_scenario
|
2695 |
name: MTEB MassiveScenarioClassification (ko)
|
2696 |
+
config: ko
|
2697 |
+
split: test
|
2698 |
metrics:
|
2699 |
- type: accuracy
|
2700 |
value: 36.56691324815064
|
|
|
2705 |
dataset:
|
2706 |
type: mteb/amazon_massive_scenario
|
2707 |
name: MTEB MassiveScenarioClassification (lv)
|
2708 |
+
config: lv
|
2709 |
+
split: test
|
2710 |
metrics:
|
2711 |
- type: accuracy
|
2712 |
value: 40.928043039677206
|
|
|
2717 |
dataset:
|
2718 |
type: mteb/amazon_massive_scenario
|
2719 |
name: MTEB MassiveScenarioClassification (ml)
|
2720 |
+
config: ml
|
2721 |
+
split: test
|
2722 |
metrics:
|
2723 |
- type: accuracy
|
2724 |
value: 25.527908540685946
|
|
|
2729 |
dataset:
|
2730 |
type: mteb/amazon_massive_scenario
|
2731 |
name: MTEB MassiveScenarioClassification (mn)
|
2732 |
+
config: mn
|
2733 |
+
split: test
|
2734 |
metrics:
|
2735 |
- type: accuracy
|
2736 |
value: 29.105581708137183
|
|
|
2741 |
dataset:
|
2742 |
type: mteb/amazon_massive_scenario
|
2743 |
name: MTEB MassiveScenarioClassification (ms)
|
2744 |
+
config: ms
|
2745 |
+
split: test
|
2746 |
metrics:
|
2747 |
- type: accuracy
|
2748 |
value: 43.78614660390047
|
|
|
2753 |
dataset:
|
2754 |
type: mteb/amazon_massive_scenario
|
2755 |
name: MTEB MassiveScenarioClassification (my)
|
2756 |
+
config: my
|
2757 |
+
split: test
|
2758 |
metrics:
|
2759 |
- type: accuracy
|
2760 |
value: 27.269670477471415
|
|
|
2765 |
dataset:
|
2766 |
type: mteb/amazon_massive_scenario
|
2767 |
name: MTEB MassiveScenarioClassification (nb)
|
2768 |
+
config: nb
|
2769 |
+
split: test
|
2770 |
metrics:
|
2771 |
- type: accuracy
|
2772 |
value: 39.018157363819775
|
|
|
2777 |
dataset:
|
2778 |
type: mteb/amazon_massive_scenario
|
2779 |
name: MTEB MassiveScenarioClassification (nl)
|
2780 |
+
config: nl
|
2781 |
+
split: test
|
2782 |
metrics:
|
2783 |
- type: accuracy
|
2784 |
value: 45.35978480161399
|
|
|
2789 |
dataset:
|
2790 |
type: mteb/amazon_massive_scenario
|
2791 |
name: MTEB MassiveScenarioClassification (pl)
|
2792 |
+
config: pl
|
2793 |
+
split: test
|
2794 |
metrics:
|
2795 |
- type: accuracy
|
2796 |
value: 41.89307330195023
|
|
|
2801 |
dataset:
|
2802 |
type: mteb/amazon_massive_scenario
|
2803 |
name: MTEB MassiveScenarioClassification (pt)
|
2804 |
+
config: pt
|
2805 |
+
split: test
|
2806 |
metrics:
|
2807 |
- type: accuracy
|
2808 |
value: 45.901143241425686
|
|
|
2813 |
dataset:
|
2814 |
type: mteb/amazon_massive_scenario
|
2815 |
name: MTEB MassiveScenarioClassification (ro)
|
2816 |
+
config: ro
|
2817 |
+
split: test
|
2818 |
metrics:
|
2819 |
- type: accuracy
|
2820 |
value: 44.11566913248151
|
|
|
2825 |
dataset:
|
2826 |
type: mteb/amazon_massive_scenario
|
2827 |
name: MTEB MassiveScenarioClassification (ru)
|
2828 |
+
config: ru
|
2829 |
+
split: test
|
2830 |
metrics:
|
2831 |
- type: accuracy
|
2832 |
value: 32.76395427034297
|
|
|
2837 |
dataset:
|
2838 |
type: mteb/amazon_massive_scenario
|
2839 |
name: MTEB MassiveScenarioClassification (sl)
|
2840 |
+
config: sl
|
2841 |
+
split: test
|
2842 |
metrics:
|
2843 |
- type: accuracy
|
2844 |
value: 40.504371217215876
|
|
|
2849 |
dataset:
|
2850 |
type: mteb/amazon_massive_scenario
|
2851 |
name: MTEB MassiveScenarioClassification (sq)
|
2852 |
+
config: sq
|
2853 |
+
split: test
|
2854 |
metrics:
|
2855 |
- type: accuracy
|
2856 |
value: 42.51849361129792
|
|
|
2861 |
dataset:
|
2862 |
type: mteb/amazon_massive_scenario
|
2863 |
name: MTEB MassiveScenarioClassification (sv)
|
2864 |
+
config: sv
|
2865 |
+
split: test
|
2866 |
metrics:
|
2867 |
- type: accuracy
|
2868 |
value: 42.293207800941495
|
|
|
2873 |
dataset:
|
2874 |
type: mteb/amazon_massive_scenario
|
2875 |
name: MTEB MassiveScenarioClassification (sw)
|
2876 |
+
config: sw
|
2877 |
+
split: test
|
2878 |
metrics:
|
2879 |
- type: accuracy
|
2880 |
value: 42.9993275050437
|
|
|
2885 |
dataset:
|
2886 |
type: mteb/amazon_massive_scenario
|
2887 |
name: MTEB MassiveScenarioClassification (ta)
|
2888 |
+
config: ta
|
2889 |
+
split: test
|
2890 |
metrics:
|
2891 |
- type: accuracy
|
2892 |
value: 28.32548755884331
|
|
|
2897 |
dataset:
|
2898 |
type: mteb/amazon_massive_scenario
|
2899 |
name: MTEB MassiveScenarioClassification (te)
|
2900 |
+
config: te
|
2901 |
+
split: test
|
2902 |
metrics:
|
2903 |
- type: accuracy
|
2904 |
value: 26.593813046402154
|
|
|
2909 |
dataset:
|
2910 |
type: mteb/amazon_massive_scenario
|
2911 |
name: MTEB MassiveScenarioClassification (th)
|
2912 |
+
config: th
|
2913 |
+
split: test
|
2914 |
metrics:
|
2915 |
- type: accuracy
|
2916 |
value: 36.788836583725626
|
|
|
2921 |
dataset:
|
2922 |
type: mteb/amazon_massive_scenario
|
2923 |
name: MTEB MassiveScenarioClassification (tl)
|
2924 |
+
config: tl
|
2925 |
+
split: test
|
2926 |
metrics:
|
2927 |
- type: accuracy
|
2928 |
value: 42.5689307330195
|
|
|
2933 |
dataset:
|
2934 |
type: mteb/amazon_massive_scenario
|
2935 |
name: MTEB MassiveScenarioClassification (tr)
|
2936 |
+
config: tr
|
2937 |
+
split: test
|
2938 |
metrics:
|
2939 |
- type: accuracy
|
2940 |
value: 37.09482178883658
|
|
|
2945 |
dataset:
|
2946 |
type: mteb/amazon_massive_scenario
|
2947 |
name: MTEB MassiveScenarioClassification (ur)
|
2948 |
+
config: ur
|
2949 |
+
split: test
|
2950 |
metrics:
|
2951 |
- type: accuracy
|
2952 |
value: 28.836583725622063
|
|
|
2957 |
dataset:
|
2958 |
type: mteb/amazon_massive_scenario
|
2959 |
name: MTEB MassiveScenarioClassification (vi)
|
2960 |
+
config: vi
|
2961 |
+
split: test
|
2962 |
metrics:
|
2963 |
- type: accuracy
|
2964 |
value: 37.357094821788834
|
|
|
2969 |
dataset:
|
2970 |
type: mteb/amazon_massive_scenario
|
2971 |
name: MTEB MassiveScenarioClassification (zh-CN)
|
2972 |
+
config: zh-CN
|
2973 |
+
split: test
|
2974 |
metrics:
|
2975 |
- type: accuracy
|
2976 |
value: 49.37794216543375
|
|
|
2981 |
dataset:
|
2982 |
type: mteb/amazon_massive_scenario
|
2983 |
name: MTEB MassiveScenarioClassification (zh-TW)
|
2984 |
+
config: zh-TW
|
2985 |
+
split: test
|
2986 |
metrics:
|
2987 |
- type: accuracy
|
2988 |
value: 44.42165433759248
|
|
|
2993 |
dataset:
|
2994 |
type: mteb/medrxiv-clustering-p2p
|
2995 |
name: MTEB MedrxivClusteringP2P
|
2996 |
+
config: default
|
2997 |
+
split: test
|
2998 |
metrics:
|
2999 |
- type: v_measure
|
3000 |
value: 31.374938993074252
|
|
|
3003 |
dataset:
|
3004 |
type: mteb/medrxiv-clustering-s2s
|
3005 |
name: MTEB MedrxivClusteringS2S
|
3006 |
+
config: default
|
3007 |
+
split: test
|
3008 |
metrics:
|
3009 |
- type: v_measure
|
3010 |
value: 26.871455379644093
|
|
|
3013 |
dataset:
|
3014 |
type: mteb/mind_small
|
3015 |
name: MTEB MindSmallReranking
|
3016 |
+
config: default
|
3017 |
+
split: test
|
3018 |
metrics:
|
3019 |
- type: map
|
3020 |
value: 30.402396942935333
|
|
|
3025 |
dataset:
|
3026 |
type: nfcorpus
|
3027 |
name: MTEB NFCorpus
|
3028 |
+
config: default
|
3029 |
+
split: test
|
3030 |
metrics:
|
3031 |
- type: map_at_1
|
3032 |
value: 3.7740000000000005
|
|
|
3093 |
dataset:
|
3094 |
type: nq
|
3095 |
name: MTEB NQ
|
3096 |
+
config: default
|
3097 |
+
split: test
|
3098 |
metrics:
|
3099 |
- type: map_at_1
|
3100 |
value: 15.620999999999999
|
|
|
3161 |
dataset:
|
3162 |
type: quora
|
3163 |
name: MTEB QuoraRetrieval
|
3164 |
+
config: default
|
3165 |
+
split: test
|
3166 |
metrics:
|
3167 |
- type: map_at_1
|
3168 |
value: 54.717000000000006
|
|
|
3229 |
dataset:
|
3230 |
type: mteb/reddit-clustering
|
3231 |
name: MTEB RedditClustering
|
3232 |
+
config: default
|
3233 |
+
split: test
|
3234 |
metrics:
|
3235 |
- type: v_measure
|
3236 |
value: 40.23390747226228
|
|
|
3239 |
dataset:
|
3240 |
type: mteb/reddit-clustering-p2p
|
3241 |
name: MTEB RedditClusteringP2P
|
3242 |
+
config: default
|
3243 |
+
split: test
|
3244 |
metrics:
|
3245 |
- type: v_measure
|
3246 |
value: 49.090518272935626
|
|
|
3249 |
dataset:
|
3250 |
type: scidocs
|
3251 |
name: MTEB SCIDOCS
|
3252 |
+
config: default
|
3253 |
+
split: test
|
3254 |
metrics:
|
3255 |
- type: map_at_1
|
3256 |
value: 3.028
|
|
|
3317 |
dataset:
|
3318 |
type: mteb/sickr-sts
|
3319 |
name: MTEB SICK-R
|
3320 |
+
config: default
|
3321 |
+
split: test
|
3322 |
metrics:
|
3323 |
- type: cos_sim_pearson
|
3324 |
value: 76.62983928119752
|
|
|
3337 |
dataset:
|
3338 |
type: mteb/sts12-sts
|
3339 |
name: MTEB STS12
|
3340 |
+
config: default
|
3341 |
+
split: test
|
3342 |
metrics:
|
3343 |
- type: cos_sim_pearson
|
3344 |
value: 74.42679147085553
|
|
|
3357 |
dataset:
|
3358 |
type: mteb/sts13-sts
|
3359 |
name: MTEB STS13
|
3360 |
+
config: default
|
3361 |
+
split: test
|
3362 |
metrics:
|
3363 |
- type: cos_sim_pearson
|
3364 |
value: 75.62472426599543
|
|
|
3377 |
dataset:
|
3378 |
type: mteb/sts14-sts
|
3379 |
name: MTEB STS14
|
3380 |
+
config: default
|
3381 |
+
split: test
|
3382 |
metrics:
|
3383 |
- type: cos_sim_pearson
|
3384 |
value: 74.48227705407035
|
|
|
3397 |
dataset:
|
3398 |
type: mteb/sts15-sts
|
3399 |
name: MTEB STS15
|
3400 |
+
config: default
|
3401 |
+
split: test
|
3402 |
metrics:
|
3403 |
- type: cos_sim_pearson
|
3404 |
value: 78.1566527175902
|
|
|
3417 |
dataset:
|
3418 |
type: mteb/sts16-sts
|
3419 |
name: MTEB STS16
|
3420 |
+
config: default
|
3421 |
+
split: test
|
3422 |
metrics:
|
3423 |
- type: cos_sim_pearson
|
3424 |
value: 75.068454465977
|
|
|
3437 |
dataset:
|
3438 |
type: mteb/sts17-crosslingual-sts
|
3439 |
name: MTEB STS17 (ko-ko)
|
3440 |
+
config: ko-ko
|
3441 |
+
split: test
|
3442 |
metrics:
|
3443 |
- type: cos_sim_pearson
|
3444 |
value: 39.43327289939437
|
|
|
3457 |
dataset:
|
3458 |
type: mteb/sts17-crosslingual-sts
|
3459 |
name: MTEB STS17 (ar-ar)
|
3460 |
+
config: ar-ar
|
3461 |
+
split: test
|
3462 |
metrics:
|
3463 |
- type: cos_sim_pearson
|
3464 |
value: 55.54431928210687
|
|
|
3477 |
dataset:
|
3478 |
type: mteb/sts17-crosslingual-sts
|
3479 |
name: MTEB STS17 (en-ar)
|
3480 |
+
config: en-ar
|
3481 |
+
split: test
|
3482 |
metrics:
|
3483 |
- type: cos_sim_pearson
|
3484 |
value: 11.378463868809098
|
|
|
3497 |
dataset:
|
3498 |
type: mteb/sts17-crosslingual-sts
|
3499 |
name: MTEB STS17 (en-de)
|
3500 |
+
config: en-de
|
3501 |
+
split: test
|
3502 |
metrics:
|
3503 |
- type: cos_sim_pearson
|
3504 |
value: 32.71403560929013
|
|
|
3517 |
dataset:
|
3518 |
type: mteb/sts17-crosslingual-sts
|
3519 |
name: MTEB STS17 (en-en)
|
3520 |
+
config: en-en
|
3521 |
+
split: test
|
3522 |
metrics:
|
3523 |
- type: cos_sim_pearson
|
3524 |
value: 83.36340470799158
|
|
|
3537 |
dataset:
|
3538 |
type: mteb/sts17-crosslingual-sts
|
3539 |
name: MTEB STS17 (en-tr)
|
3540 |
+
config: en-tr
|
3541 |
+
split: test
|
3542 |
metrics:
|
3543 |
- type: cos_sim_pearson
|
3544 |
value: 1.9200044163754912
|
|
|
3557 |
dataset:
|
3558 |
type: mteb/sts17-crosslingual-sts
|
3559 |
name: MTEB STS17 (es-en)
|
3560 |
+
config: es-en
|
3561 |
+
split: test
|
3562 |
metrics:
|
3563 |
- type: cos_sim_pearson
|
3564 |
value: 26.561262451099577
|
|
|
3577 |
dataset:
|
3578 |
type: mteb/sts17-crosslingual-sts
|
3579 |
name: MTEB STS17 (es-es)
|
3580 |
+
config: es-es
|
3581 |
+
split: test
|
3582 |
metrics:
|
3583 |
- type: cos_sim_pearson
|
3584 |
value: 69.7544202001433
|
|
|
3597 |
dataset:
|
3598 |
type: mteb/sts17-crosslingual-sts
|
3599 |
name: MTEB STS17 (fr-en)
|
3600 |
+
config: fr-en
|
3601 |
+
split: test
|
3602 |
metrics:
|
3603 |
- type: cos_sim_pearson
|
3604 |
value: 27.70511842301491
|
|
|
3617 |
dataset:
|
3618 |
type: mteb/sts17-crosslingual-sts
|
3619 |
name: MTEB STS17 (it-en)
|
3620 |
+
config: it-en
|
3621 |
+
split: test
|
3622 |
metrics:
|
3623 |
- type: cos_sim_pearson
|
3624 |
value: 24.226521799447692
|
|
|
3637 |
dataset:
|
3638 |
type: mteb/sts17-crosslingual-sts
|
3639 |
name: MTEB STS17 (nl-en)
|
3640 |
+
config: nl-en
|
3641 |
+
split: test
|
3642 |
metrics:
|
3643 |
- type: cos_sim_pearson
|
3644 |
value: 29.131412364061234
|
|
|
3657 |
dataset:
|
3658 |
type: mteb/sts22-crosslingual-sts
|
3659 |
name: MTEB STS22 (en)
|
3660 |
+
config: en
|
3661 |
+
split: test
|
3662 |
metrics:
|
3663 |
- type: cos_sim_pearson
|
3664 |
value: 64.04750650962879
|
|
|
3677 |
dataset:
|
3678 |
type: mteb/sts22-crosslingual-sts
|
3679 |
name: MTEB STS22 (de)
|
3680 |
+
config: de
|
3681 |
+
split: test
|
3682 |
metrics:
|
3683 |
- type: cos_sim_pearson
|
3684 |
value: 19.26519187000913
|
|
|
3697 |
dataset:
|
3698 |
type: mteb/sts22-crosslingual-sts
|
3699 |
name: MTEB STS22 (es)
|
3700 |
+
config: es
|
3701 |
+
split: test
|
3702 |
metrics:
|
3703 |
- type: cos_sim_pearson
|
3704 |
value: 34.221261828226936
|
|
|
3717 |
dataset:
|
3718 |
type: mteb/sts22-crosslingual-sts
|
3719 |
name: MTEB STS22 (pl)
|
3720 |
+
config: pl
|
3721 |
+
split: test
|
3722 |
metrics:
|
3723 |
- type: cos_sim_pearson
|
3724 |
value: 3.620381732096531
|
|
|
3737 |
dataset:
|
3738 |
type: mteb/sts22-crosslingual-sts
|
3739 |
name: MTEB STS22 (tr)
|
3740 |
+
config: tr
|
3741 |
+
split: test
|
3742 |
metrics:
|
3743 |
- type: cos_sim_pearson
|
3744 |
value: 16.69489628726267
|
|
|
3757 |
dataset:
|
3758 |
type: mteb/sts22-crosslingual-sts
|
3759 |
name: MTEB STS22 (ar)
|
3760 |
+
config: ar
|
3761 |
+
split: test
|
3762 |
metrics:
|
3763 |
- type: cos_sim_pearson
|
3764 |
value: 9.134927430889528
|
|
|
3777 |
dataset:
|
3778 |
type: mteb/sts22-crosslingual-sts
|
3779 |
name: MTEB STS22 (ru)
|
3780 |
+
config: ru
|
3781 |
+
split: test
|
3782 |
metrics:
|
3783 |
- type: cos_sim_pearson
|
3784 |
value: 3.6386482942352085
|
|
|
3797 |
dataset:
|
3798 |
type: mteb/sts22-crosslingual-sts
|
3799 |
name: MTEB STS22 (zh)
|
3800 |
+
config: zh
|
3801 |
+
split: test
|
3802 |
metrics:
|
3803 |
- type: cos_sim_pearson
|
3804 |
value: 2.972091574908432
|
|
|
3817 |
dataset:
|
3818 |
type: mteb/sts22-crosslingual-sts
|
3819 |
name: MTEB STS22 (fr)
|
3820 |
+
config: fr
|
3821 |
+
split: test
|
3822 |
metrics:
|
3823 |
- type: cos_sim_pearson
|
3824 |
value: 54.4745185734135
|
|
|
3837 |
dataset:
|
3838 |
type: mteb/sts22-crosslingual-sts
|
3839 |
name: MTEB STS22 (de-en)
|
3840 |
+
config: de-en
|
3841 |
+
split: test
|
3842 |
metrics:
|
3843 |
- type: cos_sim_pearson
|
3844 |
value: 49.37865412588201
|
|
|
3857 |
dataset:
|
3858 |
type: mteb/sts22-crosslingual-sts
|
3859 |
name: MTEB STS22 (es-en)
|
3860 |
+
config: es-en
|
3861 |
+
split: test
|
3862 |
metrics:
|
3863 |
- type: cos_sim_pearson
|
3864 |
value: 44.925652392562135
|
|
|
3877 |
dataset:
|
3878 |
type: mteb/sts22-crosslingual-sts
|
3879 |
name: MTEB STS22 (it)
|
3880 |
+
config: it
|
3881 |
+
split: test
|
3882 |
metrics:
|
3883 |
- type: cos_sim_pearson
|
3884 |
value: 45.241690321111875
|
|
|
3897 |
dataset:
|
3898 |
type: mteb/sts22-crosslingual-sts
|
3899 |
name: MTEB STS22 (pl-en)
|
3900 |
+
config: pl-en
|
3901 |
+
split: test
|
3902 |
metrics:
|
3903 |
- type: cos_sim_pearson
|
3904 |
value: 36.42138324083909
|
|
|
3917 |
dataset:
|
3918 |
type: mteb/sts22-crosslingual-sts
|
3919 |
name: MTEB STS22 (zh-en)
|
3920 |
+
config: zh-en
|
3921 |
+
split: test
|
3922 |
metrics:
|
3923 |
- type: cos_sim_pearson
|
3924 |
value: 26.55350664089358
|
|
|
3937 |
dataset:
|
3938 |
type: mteb/sts22-crosslingual-sts
|
3939 |
name: MTEB STS22 (es-it)
|
3940 |
+
config: es-it
|
3941 |
+
split: test
|
3942 |
metrics:
|
3943 |
- type: cos_sim_pearson
|
3944 |
value: 38.54682179114309
|
|
|
3957 |
dataset:
|
3958 |
type: mteb/sts22-crosslingual-sts
|
3959 |
name: MTEB STS22 (de-fr)
|
3960 |
+
config: de-fr
|
3961 |
+
split: test
|
3962 |
metrics:
|
3963 |
- type: cos_sim_pearson
|
3964 |
value: 35.12956772546032
|
|
|
3977 |
dataset:
|
3978 |
type: mteb/sts22-crosslingual-sts
|
3979 |
name: MTEB STS22 (de-pl)
|
3980 |
+
config: de-pl
|
3981 |
+
split: test
|
3982 |
metrics:
|
3983 |
- type: cos_sim_pearson
|
3984 |
value: 30.507667380509634
|
|
|
3997 |
dataset:
|
3998 |
type: mteb/sts22-crosslingual-sts
|
3999 |
name: MTEB STS22 (fr-pl)
|
4000 |
+
config: fr-pl
|
4001 |
+
split: test
|
4002 |
metrics:
|
4003 |
- type: cos_sim_pearson
|
4004 |
value: 71.10820459712156
|
|
|
4017 |
dataset:
|
4018 |
type: mteb/stsbenchmark-sts
|
4019 |
name: MTEB STSBenchmark
|
4020 |
+
config: default
|
4021 |
+
split: test
|
4022 |
metrics:
|
4023 |
- type: cos_sim_pearson
|
4024 |
value: 76.53032504460737
|
|
|
4037 |
dataset:
|
4038 |
type: mteb/scidocs-reranking
|
4039 |
name: MTEB SciDocsRR
|
4040 |
+
config: default
|
4041 |
+
split: test
|
4042 |
metrics:
|
4043 |
- type: map
|
4044 |
value: 71.33941904192648
|
|
|
4049 |
dataset:
|
4050 |
type: scifact
|
4051 |
name: MTEB SciFact
|
4052 |
+
config: default
|
4053 |
+
split: test
|
4054 |
metrics:
|
4055 |
- type: map_at_1
|
4056 |
value: 43.333
|
|
|
4117 |
dataset:
|
4118 |
type: mteb/sprintduplicatequestions-pairclassification
|
4119 |
name: MTEB SprintDuplicateQuestions
|
4120 |
+
config: default
|
4121 |
+
split: test
|
4122 |
metrics:
|
4123 |
- type: cos_sim_accuracy
|
4124 |
value: 99.7
|
|
|
4171 |
dataset:
|
4172 |
type: mteb/stackexchange-clustering
|
4173 |
name: MTEB StackExchangeClustering
|
4174 |
+
config: default
|
4175 |
+
split: test
|
4176 |
metrics:
|
4177 |
- type: v_measure
|
4178 |
value: 52.74481093815175
|
|
|
4181 |
dataset:
|
4182 |
type: mteb/stackexchange-clustering-p2p
|
4183 |
name: MTEB StackExchangeClusteringP2P
|
4184 |
+
config: default
|
4185 |
+
split: test
|
4186 |
metrics:
|
4187 |
- type: v_measure
|
4188 |
value: 32.65999453562101
|
|
|
4191 |
dataset:
|
4192 |
type: mteb/stackoverflowdupquestions-reranking
|
4193 |
name: MTEB StackOverflowDupQuestions
|
4194 |
+
config: default
|
4195 |
+
split: test
|
4196 |
metrics:
|
4197 |
- type: map
|
4198 |
value: 44.74498464555465
|
|
|
4203 |
dataset:
|
4204 |
type: mteb/summeval
|
4205 |
name: MTEB SummEval
|
4206 |
+
config: default
|
4207 |
+
split: test
|
4208 |
metrics:
|
4209 |
- type: cos_sim_pearson
|
4210 |
value: 29.5961822471627
|
|
|
4219 |
dataset:
|
4220 |
type: trec-covid
|
4221 |
name: MTEB TRECCOVID
|
4222 |
+
config: default
|
4223 |
+
split: test
|
4224 |
metrics:
|
4225 |
- type: map_at_1
|
4226 |
value: 0.241
|
|
|
4287 |
dataset:
|
4288 |
type: webis-touche2020
|
4289 |
name: MTEB Touche2020
|
4290 |
+
config: default
|
4291 |
+
split: test
|
4292 |
metrics:
|
4293 |
- type: map_at_1
|
4294 |
value: 2.782
|
|
|
4355 |
dataset:
|
4356 |
type: mteb/toxic_conversations_50k
|
4357 |
name: MTEB ToxicConversationsClassification
|
4358 |
+
config: default
|
4359 |
+
split: test
|
4360 |
metrics:
|
4361 |
- type: accuracy
|
4362 |
value: 62.657999999999994
|
|
|
4369 |
dataset:
|
4370 |
type: mteb/tweet_sentiment_extraction
|
4371 |
name: MTEB TweetSentimentExtractionClassification
|
4372 |
+
config: default
|
4373 |
+
split: test
|
4374 |
metrics:
|
4375 |
- type: accuracy
|
4376 |
value: 52.40803621958121
|
|
|
4381 |
dataset:
|
4382 |
type: mteb/twentynewsgroups-clustering
|
4383 |
name: MTEB TwentyNewsgroupsClustering
|
4384 |
+
config: default
|
4385 |
+
split: test
|
4386 |
metrics:
|
4387 |
- type: v_measure
|
4388 |
value: 32.12697126747911
|
|
|
4391 |
dataset:
|
4392 |
type: mteb/twittersemeval2015-pairclassification
|
4393 |
name: MTEB TwitterSemEval2015
|
4394 |
+
config: default
|
4395 |
+
split: test
|
4396 |
metrics:
|
4397 |
- type: cos_sim_accuracy
|
4398 |
value: 80.69976753889253
|
|
|
4445 |
dataset:
|
4446 |
type: mteb/twitterurlcorpus-pairclassification
|
4447 |
name: MTEB TwitterURLCorpus
|
4448 |
+
config: default
|
4449 |
+
split: test
|
4450 |
metrics:
|
4451 |
- type: cos_sim_accuracy
|
4452 |
value: 86.90573213800597
|