|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
model-index: |
|
- name: SGPT-125M-weightedmean-nli-bitfit |
|
results: |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
metrics: |
|
- type: v_measure |
|
value: 0.28301902023313874 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.76401935081936 |
|
- type: cos_sim_spearman |
|
value: 0.7723446219694267 |
|
- type: euclidean_pearson |
|
value: 0.7461017160439877 |
|
- type: euclidean_spearman |
|
value: 0.7585871531365609 |
|
- type: manhattan_pearson |
|
value: 0.7483034779539725 |
|
- type: manhattan_spearman |
|
value: 0.759594899358843 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
metrics: |
|
- type: v_measure |
|
value: 0.3474248247787077 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
metrics: |
|
- type: accuracy |
|
value: 0.35098 |
|
- type: f1 |
|
value: 0.34732656514357263 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (de) |
|
metrics: |
|
- type: accuracy |
|
value: 0.24516 |
|
- type: f1 |
|
value: 0.2421748200448397 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (es) |
|
metrics: |
|
- type: accuracy |
|
value: 0.29097999999999996 |
|
- type: f1 |
|
value: 0.28620040162757093 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (fr) |
|
metrics: |
|
- type: accuracy |
|
value: 0.27396 |
|
- type: f1 |
|
value: 0.27146888644986283 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (ja) |
|
metrics: |
|
- type: accuracy |
|
value: 0.21724000000000002 |
|
- type: f1 |
|
value: 0.2137230564276654 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (zh) |
|
metrics: |
|
- type: accuracy |
|
value: 0.23975999999999997 |
|
- type: f1 |
|
value: 0.23741137981755484 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/bucc-bitext-mining |
|
name: MTEB BUCC (de-en) |
|
metrics: |
|
- type: accuracy |
|
value: 0.010960334029227558 |
|
- type: f1 |
|
value: 0.01092553931802366 |
|
- type: precision |
|
value: 0.010908141962421711 |
|
- type: recall |
|
value: 0.010960334029227558 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/bucc-bitext-mining |
|
name: MTEB BUCC (fr-en) |
|
metrics: |
|
- type: accuracy |
|
value: 0.00022011886418666079 |
|
- type: f1 |
|
value: 0.00022011886418666079 |
|
- type: precision |
|
value: 0.00022011886418666079 |
|
- type: recall |
|
value: 0.00022011886418666079 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/bucc-bitext-mining |
|
name: MTEB BUCC (ru-en) |
|
metrics: |
|
- type: accuracy |
|
value: 0.0 |
|
- type: f1 |
|
value: 0.0 |
|
- type: precision |
|
value: 0.0 |
|
- type: recall |
|
value: 0.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/bucc-bitext-mining |
|
name: MTEB BUCC (zh-en) |
|
metrics: |
|
- type: accuracy |
|
value: 0.0 |
|
- type: f1 |
|
value: 0.0 |
|
- type: precision |
|
value: 0.0 |
|
- type: recall |
|
value: 0.0 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
metrics: |
|
- type: accuracy |
|
value: 0.8151846785225718 |
|
- type: f1 |
|
value: 0.81648869152345 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (de) |
|
metrics: |
|
- type: accuracy |
|
value: 0.6037475345167653 |
|
- type: f1 |
|
value: 0.5845264937551703 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (es) |
|
metrics: |
|
- type: accuracy |
|
value: 0.6736824549699799 |
|
- type: f1 |
|
value: 0.6535927434998515 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (fr) |
|
metrics: |
|
- type: accuracy |
|
value: 0.6312871907297212 |
|
- type: f1 |
|
value: 0.6137620329272278 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (hi) |
|
metrics: |
|
- type: accuracy |
|
value: 0.47045536034420943 |
|
- type: f1 |
|
value: 0.46203899126445613 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (th) |
|
metrics: |
|
- type: accuracy |
|
value: 0.5228209764918625 |
|
- type: f1 |
|
value: 0.5075489206473579 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.0808 |
|
- type: map_at_10 |
|
value: 0.11691 |
|
- type: map_at_100 |
|
value: 0.12312 |
|
- type: map_at_1000 |
|
value: 0.12439 |
|
- type: map_at_3 |
|
value: 0.10344 |
|
- type: map_at_5 |
|
value: 0.10996 |
|
- type: ndcg_at_1 |
|
value: 0.10697 |
|
- type: ndcg_at_10 |
|
value: 0.1448 |
|
- type: ndcg_at_100 |
|
value: 0.18161 |
|
- type: ndcg_at_1000 |
|
value: 0.21886 |
|
- type: ndcg_at_3 |
|
value: 0.11872 |
|
- type: ndcg_at_5 |
|
value: 0.12834 |
|
- type: precision_at_1 |
|
value: 0.10697 |
|
- type: precision_at_10 |
|
value: 0.02811 |
|
- type: precision_at_100 |
|
value: 0.00551 |
|
- type: precision_at_1000 |
|
value: 0.00102 |
|
- type: precision_at_3 |
|
value: 0.05804 |
|
- type: precision_at_5 |
|
value: 0.04154 |
|
- type: recall_at_1 |
|
value: 0.0808 |
|
- type: recall_at_10 |
|
value: 0.20235 |
|
- type: recall_at_100 |
|
value: 0.37526 |
|
- type: recall_at_1000 |
|
value: 0.65106 |
|
- type: recall_at_3 |
|
value: 0.12804 |
|
- type: recall_at_5 |
|
value: 0.15499 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
metrics: |
|
- type: accuracy |
|
value: 0.6588059701492537 |
|
- type: ap |
|
value: 0.28685493163579784 |
|
- type: f1 |
|
value: 0.5979951005816335 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (de) |
|
metrics: |
|
- type: accuracy |
|
value: 0.5907922912205568 |
|
- type: ap |
|
value: 0.7391887421019034 |
|
- type: f1 |
|
value: 0.566316368658711 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en-ext) |
|
metrics: |
|
- type: accuracy |
|
value: 0.6491754122938531 |
|
- type: ap |
|
value: 0.16360681214864226 |
|
- type: f1 |
|
value: 0.5312659206152377 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (ja) |
|
metrics: |
|
- type: accuracy |
|
value: 0.56423982869379 |
|
- type: ap |
|
value: 0.12143003571907898 |
|
- type: f1 |
|
value: 0.45763637779874716 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.06496 |
|
- type: map_at_10 |
|
value: 0.09243 |
|
- type: map_at_100 |
|
value: 0.09841 |
|
- type: map_at_1000 |
|
value: 0.09946 |
|
- type: map_at_3 |
|
value: 0.08395 |
|
- type: map_at_5 |
|
value: 0.08872 |
|
- type: ndcg_at_1 |
|
value: 0.08224 |
|
- type: ndcg_at_10 |
|
value: 0.1124 |
|
- type: ndcg_at_100 |
|
value: 0.14525 |
|
- type: ndcg_at_1000 |
|
value: 0.17686 |
|
- type: ndcg_at_3 |
|
value: 0.09617 |
|
- type: ndcg_at_5 |
|
value: 0.1037 |
|
- type: precision_at_1 |
|
value: 0.08224 |
|
- type: precision_at_10 |
|
value: 0.02082 |
|
- type: precision_at_100 |
|
value: 0.00443 |
|
- type: precision_at_1000 |
|
value: 0.00085 |
|
- type: precision_at_3 |
|
value: 0.04623 |
|
- type: precision_at_5 |
|
value: 0.03331 |
|
- type: recall_at_1 |
|
value: 0.06496 |
|
- type: recall_at_10 |
|
value: 0.1531 |
|
- type: recall_at_100 |
|
value: 0.3068 |
|
- type: recall_at_1000 |
|
value: 0.54335 |
|
- type: recall_at_3 |
|
value: 0.10691 |
|
- type: recall_at_5 |
|
value: 0.12688 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
metrics: |
|
- type: map |
|
value: 0.2926934104146833 |
|
- type: mrr |
|
value: 0.3013214087687572 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nfcorpus |
|
name: MTEB NFCorpus |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.01227 |
|
- type: map_at_10 |
|
value: 0.03081 |
|
- type: map_at_100 |
|
value: 0.04104 |
|
- type: map_at_1000 |
|
value: 0.04989 |
|
- type: map_at_3 |
|
value: 0.02221 |
|
- type: map_at_5 |
|
value: 0.02535 |
|
- type: ndcg_at_1 |
|
value: 0.15015 |
|
- type: ndcg_at_10 |
|
value: 0.11805 |
|
- type: ndcg_at_100 |
|
value: 0.12452 |
|
- type: ndcg_at_1000 |
|
value: 0.22284 |
|
- type: ndcg_at_3 |
|
value: 0.13257 |
|
- type: ndcg_at_5 |
|
value: 0.12199 |
|
- type: precision_at_1 |
|
value: 0.16409 |
|
- type: precision_at_10 |
|
value: 0.09102 |
|
- type: precision_at_100 |
|
value: 0.03678 |
|
- type: precision_at_1000 |
|
value: 0.01609 |
|
- type: precision_at_3 |
|
value: 0.12797 |
|
- type: precision_at_5 |
|
value: 0.10464 |
|
- type: recall_at_1 |
|
value: 0.01227 |
|
- type: recall_at_10 |
|
value: 0.05838 |
|
- type: recall_at_100 |
|
value: 0.15716 |
|
- type: recall_at_1000 |
|
value: 0.48837 |
|
- type: recall_at_3 |
|
value: 0.02828 |
|
- type: recall_at_5 |
|
value: 0.03697 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: msmarco |
|
name: MTEB MSMARCO |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.0288 |
|
- type: map_at_10 |
|
value: 0.04914 |
|
- type: map_at_100 |
|
value: 0.05459 |
|
- type: map_at_1000 |
|
value: 0.05538 |
|
- type: map_at_3 |
|
value: 0.04087 |
|
- type: map_at_5 |
|
value: 0.04518 |
|
- type: ndcg_at_1 |
|
value: 0.02937 |
|
- type: ndcg_at_10 |
|
value: 0.06273 |
|
- type: ndcg_at_100 |
|
value: 0.09426 |
|
- type: ndcg_at_1000 |
|
value: 0.12033 |
|
- type: ndcg_at_3 |
|
value: 0.04513 |
|
- type: ndcg_at_5 |
|
value: 0.05292 |
|
- type: precision_at_1 |
|
value: 0.02937 |
|
- type: precision_at_10 |
|
value: 0.01089 |
|
- type: precision_at_100 |
|
value: 0.00277 |
|
- type: precision_at_1000 |
|
value: 0.00051 |
|
- type: precision_at_3 |
|
value: 0.01929 |
|
- type: precision_at_5 |
|
value: 0.01547 |
|
- type: recall_at_1 |
|
value: 0.0288 |
|
- type: recall_at_10 |
|
value: 0.10578 |
|
- type: recall_at_100 |
|
value: 0.26267 |
|
- type: recall_at_1000 |
|
value: 0.4759 |
|
- type: recall_at_3 |
|
value: 0.05673 |
|
- type: recall_at_5 |
|
value: 0.07545 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.13843 |
|
- type: map_at_10 |
|
value: 0.17496 |
|
- type: map_at_100 |
|
value: 0.18304 |
|
- type: map_at_1000 |
|
value: 0.18426 |
|
- type: map_at_3 |
|
value: 0.16225 |
|
- type: map_at_5 |
|
value: 0.1683 |
|
- type: ndcg_at_1 |
|
value: 0.16698 |
|
- type: ndcg_at_10 |
|
value: 0.20301 |
|
- type: ndcg_at_100 |
|
value: 0.24523 |
|
- type: ndcg_at_1000 |
|
value: 0.27784 |
|
- type: ndcg_at_3 |
|
value: 0.17822 |
|
- type: ndcg_at_5 |
|
value: 0.18794 |
|
- type: precision_at_1 |
|
value: 0.16698 |
|
- type: precision_at_10 |
|
value: 0.03358 |
|
- type: precision_at_100 |
|
value: 0.00618 |
|
- type: precision_at_1000 |
|
value: 0.00101 |
|
- type: precision_at_3 |
|
value: 0.07898 |
|
- type: precision_at_5 |
|
value: 0.05429 |
|
- type: recall_at_1 |
|
value: 0.13843 |
|
- type: recall_at_10 |
|
value: 0.25888 |
|
- type: recall_at_100 |
|
value: 0.45028 |
|
- type: recall_at_1000 |
|
value: 0.68991 |
|
- type: recall_at_3 |
|
value: 0.18851 |
|
- type: recall_at_5 |
|
value: 0.21462 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.8020938796088339 |
|
- type: cos_sim_spearman |
|
value: 0.6916914010333395 |
|
- type: euclidean_pearson |
|
value: 0.7933415250097545 |
|
- type: euclidean_spearman |
|
value: 0.7146707320292746 |
|
- type: manhattan_pearson |
|
value: 0.7973669837981976 |
|
- type: manhattan_spearman |
|
value: 0.7187919511134903 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
metrics: |
|
- type: v_measure |
|
value: 0.4459127540530939 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
metrics: |
|
- type: map |
|
value: 0.6835710819755543 |
|
- type: mrr |
|
value: 0.8805442832403617 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: arguana |
|
name: MTEB ArguAna |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.13442 |
|
- type: map_at_10 |
|
value: 0.24275 |
|
- type: map_at_100 |
|
value: 0.25588 |
|
- type: map_at_1000 |
|
value: 0.25659 |
|
- type: map_at_3 |
|
value: 0.20092 |
|
- type: map_at_5 |
|
value: 0.2244 |
|
- type: ndcg_at_1 |
|
value: 0.13442 |
|
- type: ndcg_at_10 |
|
value: 0.3104 |
|
- type: ndcg_at_100 |
|
value: 0.37529 |
|
- type: ndcg_at_1000 |
|
value: 0.39348 |
|
- type: ndcg_at_3 |
|
value: 0.22342 |
|
- type: ndcg_at_5 |
|
value: 0.26596 |
|
- type: precision_at_1 |
|
value: 0.13442 |
|
- type: precision_at_10 |
|
value: 0.05299 |
|
- type: precision_at_100 |
|
value: 0.00836 |
|
- type: precision_at_1000 |
|
value: 0.00098 |
|
- type: precision_at_3 |
|
value: 0.09625 |
|
- type: precision_at_5 |
|
value: 0.07852 |
|
- type: recall_at_1 |
|
value: 0.13442 |
|
- type: recall_at_10 |
|
value: 0.52987 |
|
- type: recall_at_100 |
|
value: 0.83642 |
|
- type: recall_at_1000 |
|
value: 0.97795 |
|
- type: recall_at_3 |
|
value: 0.28876 |
|
- type: recall_at_5 |
|
value: 0.3926 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
metrics: |
|
- type: map |
|
value: 0.5263439984994702 |
|
- type: mrr |
|
value: 0.6575704612408213 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
metrics: |
|
- type: accuracy |
|
value: 0.5482173174872665 |
|
- type: f1 |
|
value: 0.5514729314789282 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
metrics: |
|
- type: v_measure |
|
value: 0.2467870651472156 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: hotpotqa |
|
name: MTEB HotpotQA |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.09676 |
|
- type: map_at_10 |
|
value: 0.13351 |
|
- type: map_at_100 |
|
value: 0.13919 |
|
- type: map_at_1000 |
|
value: 0.1401 |
|
- type: map_at_3 |
|
value: 0.12223 |
|
- type: map_at_5 |
|
value: 0.12812 |
|
- type: ndcg_at_1 |
|
value: 0.19352 |
|
- type: ndcg_at_10 |
|
value: 0.17727 |
|
- type: ndcg_at_100 |
|
value: 0.20837 |
|
- type: ndcg_at_1000 |
|
value: 0.23412 |
|
- type: ndcg_at_3 |
|
value: 0.15317 |
|
- type: ndcg_at_5 |
|
value: 0.16436 |
|
- type: precision_at_1 |
|
value: 0.19352 |
|
- type: precision_at_10 |
|
value: 0.03993 |
|
- type: precision_at_100 |
|
value: 0.00651 |
|
- type: precision_at_1000 |
|
value: 0.001 |
|
- type: precision_at_3 |
|
value: 0.09669 |
|
- type: precision_at_5 |
|
value: 0.0669 |
|
- type: recall_at_1 |
|
value: 0.09676 |
|
- type: recall_at_10 |
|
value: 0.19966 |
|
- type: recall_at_100 |
|
value: 0.32573 |
|
- type: recall_at_1000 |
|
value: 0.49905 |
|
- type: recall_at_3 |
|
value: 0.14504 |
|
- type: recall_at_5 |
|
value: 0.16725 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: webis-touche2020 |
|
name: MTEB Touche2020 |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.00645 |
|
- type: map_at_10 |
|
value: 0.04116 |
|
- type: map_at_100 |
|
value: 0.07527 |
|
- type: map_at_1000 |
|
value: 0.08678 |
|
- type: map_at_3 |
|
value: 0.01602 |
|
- type: map_at_5 |
|
value: 0.026 |
|
- type: ndcg_at_1 |
|
value: 0.10204 |
|
- type: ndcg_at_10 |
|
value: 0.1227 |
|
- type: ndcg_at_100 |
|
value: 0.22461 |
|
- type: ndcg_at_1000 |
|
value: 0.33543 |
|
- type: ndcg_at_3 |
|
value: 0.09982 |
|
- type: ndcg_at_5 |
|
value: 0.11498 |
|
- type: precision_at_1 |
|
value: 0.10204 |
|
- type: precision_at_10 |
|
value: 0.12245 |
|
- type: precision_at_100 |
|
value: 0.05286 |
|
- type: precision_at_1000 |
|
value: 0.01263 |
|
- type: precision_at_3 |
|
value: 0.10884 |
|
- type: precision_at_5 |
|
value: 0.13061 |
|
- type: recall_at_1 |
|
value: 0.00645 |
|
- type: recall_at_10 |
|
value: 0.08996 |
|
- type: recall_at_100 |
|
value: 0.33666 |
|
- type: recall_at_1000 |
|
value: 0.67704 |
|
- type: recall_at_3 |
|
value: 0.02504 |
|
- type: recall_at_5 |
|
value: 0.0495 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.18222 |
|
- type: map_at_10 |
|
value: 0.24506 |
|
- type: map_at_100 |
|
value: 0.25611 |
|
- type: map_at_1000 |
|
value: 0.25758 |
|
- type: map_at_3 |
|
value: 0.22265 |
|
- type: map_at_5 |
|
value: 0.23698 |
|
- type: ndcg_at_1 |
|
value: 0.23033 |
|
- type: ndcg_at_10 |
|
value: 0.28719 |
|
- type: ndcg_at_100 |
|
value: 0.33748 |
|
- type: ndcg_at_1000 |
|
value: 0.37056 |
|
- type: ndcg_at_3 |
|
value: 0.2524 |
|
- type: ndcg_at_5 |
|
value: 0.2712 |
|
- type: precision_at_1 |
|
value: 0.23033 |
|
- type: precision_at_10 |
|
value: 0.05408 |
|
- type: precision_at_100 |
|
value: 0.01004 |
|
- type: precision_at_1000 |
|
value: 0.00158 |
|
- type: precision_at_3 |
|
value: 0.11874 |
|
- type: precision_at_5 |
|
value: 0.08927 |
|
- type: recall_at_1 |
|
value: 0.18222 |
|
- type: recall_at_10 |
|
value: 0.36355 |
|
- type: recall_at_100 |
|
value: 0.58724 |
|
- type: recall_at_1000 |
|
value: 0.81335 |
|
- type: recall_at_3 |
|
value: 0.26334 |
|
- type: recall_at_5 |
|
value: 0.314 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.3056303767714449 |
|
- type: cos_sim_spearman |
|
value: 0.30256847004390486 |
|
- type: dot_pearson |
|
value: 0.29453520030995006 |
|
- type: dot_spearman |
|
value: 0.2956173255092678 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
metrics: |
|
- type: accuracy |
|
value: 0.62896 |
|
- type: ap |
|
value: 0.5847769349850157 |
|
- type: f1 |
|
value: 0.6267885149592086 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.7905293131911804 |
|
- type: cos_sim_spearman |
|
value: 0.7973794782598049 |
|
- type: euclidean_pearson |
|
value: 0.7817016171851057 |
|
- type: euclidean_spearman |
|
value: 0.7876038607583106 |
|
- type: manhattan_pearson |
|
value: 0.784994607532332 |
|
- type: manhattan_spearman |
|
value: 0.7913026720132872 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
metrics: |
|
- type: v_measure |
|
value: 0.24932123582259286 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: climate-fever |
|
name: MTEB ClimateFEVER |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.03714 |
|
- type: map_at_10 |
|
value: 0.06926 |
|
- type: map_at_100 |
|
value: 0.07879 |
|
- type: map_at_1000 |
|
value: 0.08032 |
|
- type: map_at_3 |
|
value: 0.05504 |
|
- type: map_at_5 |
|
value: 0.06357 |
|
- type: ndcg_at_1 |
|
value: 0.0886 |
|
- type: ndcg_at_10 |
|
value: 0.11007 |
|
- type: ndcg_at_100 |
|
value: 0.16154 |
|
- type: ndcg_at_1000 |
|
value: 0.19668 |
|
- type: ndcg_at_3 |
|
value: 0.08103 |
|
- type: ndcg_at_5 |
|
value: 0.09456 |
|
- type: precision_at_1 |
|
value: 0.0886 |
|
- type: precision_at_10 |
|
value: 0.0372 |
|
- type: precision_at_100 |
|
value: 0.00917 |
|
- type: precision_at_1000 |
|
value: 0.00156 |
|
- type: precision_at_3 |
|
value: 0.06254 |
|
- type: precision_at_5 |
|
value: 0.05381 |
|
- type: recall_at_1 |
|
value: 0.03714 |
|
- type: recall_at_10 |
|
value: 0.14382 |
|
- type: recall_at_100 |
|
value: 0.33166 |
|
- type: recall_at_1000 |
|
value: 0.53444 |
|
- type: recall_at_3 |
|
value: 0.07523 |
|
- type: recall_at_5 |
|
value: 0.1091 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.7535551963935667 |
|
- type: cos_sim_spearman |
|
value: 0.7098892671568665 |
|
- type: euclidean_pearson |
|
value: 0.7324467338564629 |
|
- type: euclidean_spearman |
|
value: 0.7197533151639425 |
|
- type: manhattan_pearson |
|
value: 0.7327765593599381 |
|
- type: manhattan_spearman |
|
value: 0.722221421456084 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.12058 |
|
- type: map_at_10 |
|
value: 0.16051 |
|
- type: map_at_100 |
|
value: 0.16772 |
|
- type: map_at_1000 |
|
value: 0.16871 |
|
- type: map_at_3 |
|
value: 0.1478 |
|
- type: map_at_5 |
|
value: 0.155 |
|
- type: ndcg_at_1 |
|
value: 0.1535 |
|
- type: ndcg_at_10 |
|
value: 0.18804 |
|
- type: ndcg_at_100 |
|
value: 0.22346 |
|
- type: ndcg_at_1000 |
|
value: 0.25007 |
|
- type: ndcg_at_3 |
|
value: 0.16768 |
|
- type: ndcg_at_5 |
|
value: 0.17692 |
|
- type: precision_at_1 |
|
value: 0.1535 |
|
- type: precision_at_10 |
|
value: 0.0351 |
|
- type: precision_at_100 |
|
value: 0.00664 |
|
- type: precision_at_1000 |
|
value: 0.00111 |
|
- type: precision_at_3 |
|
value: 0.07983 |
|
- type: precision_at_5 |
|
value: 0.05656 |
|
- type: recall_at_1 |
|
value: 0.12058 |
|
- type: recall_at_10 |
|
value: 0.23644 |
|
- type: recall_at_100 |
|
value: 0.3976 |
|
- type: recall_at_1000 |
|
value: 0.5856 |
|
- type: recall_at_3 |
|
value: 0.17542 |
|
- type: recall_at_5 |
|
value: 0.20232 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.21183 |
|
- type: map_at_10 |
|
value: 0.289 |
|
- type: map_at_100 |
|
value: 0.29858 |
|
- type: map_at_1000 |
|
value: 0.29954 |
|
- type: map_at_3 |
|
value: 0.2658 |
|
- type: map_at_5 |
|
value: 0.27912 |
|
- type: ndcg_at_1 |
|
value: 0.24765 |
|
- type: ndcg_at_10 |
|
value: 0.3334 |
|
- type: ndcg_at_100 |
|
value: 0.37997 |
|
- type: ndcg_at_1000 |
|
value: 0.40416 |
|
- type: ndcg_at_3 |
|
value: 0.29045 |
|
- type: ndcg_at_5 |
|
value: 0.31121 |
|
- type: precision_at_1 |
|
value: 0.24765 |
|
- type: precision_at_10 |
|
value: 0.05599 |
|
- type: precision_at_100 |
|
value: 0.0087 |
|
- type: precision_at_1000 |
|
value: 0.00115 |
|
- type: precision_at_3 |
|
value: 0.13271 |
|
- type: precision_at_5 |
|
value: 0.09367 |
|
- type: recall_at_1 |
|
value: 0.21183 |
|
- type: recall_at_10 |
|
value: 0.43875 |
|
- type: recall_at_100 |
|
value: 0.65005 |
|
- type: recall_at_1000 |
|
value: 0.83017 |
|
- type: recall_at_3 |
|
value: 0.32232 |
|
- type: recall_at_5 |
|
value: 0.37308 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fiqa |
|
name: MTEB FiQA2018 |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.03637 |
|
- type: map_at_10 |
|
value: 0.06084 |
|
- type: map_at_100 |
|
value: 0.06919 |
|
- type: map_at_1000 |
|
value: 0.07108 |
|
- type: map_at_3 |
|
value: 0.05071 |
|
- type: map_at_5 |
|
value: 0.05565 |
|
- type: ndcg_at_1 |
|
value: 0.07407 |
|
- type: ndcg_at_10 |
|
value: 0.0894 |
|
- type: ndcg_at_100 |
|
value: 0.13595 |
|
- type: ndcg_at_1000 |
|
value: 0.1829 |
|
- type: ndcg_at_3 |
|
value: 0.07393 |
|
- type: ndcg_at_5 |
|
value: 0.07854 |
|
- type: precision_at_1 |
|
value: 0.07407 |
|
- type: precision_at_10 |
|
value: 0.02778 |
|
- type: precision_at_100 |
|
value: 0.0075 |
|
- type: precision_at_1000 |
|
value: 0.00154 |
|
- type: precision_at_3 |
|
value: 0.05144 |
|
- type: precision_at_5 |
|
value: 0.03981 |
|
- type: recall_at_1 |
|
value: 0.03637 |
|
- type: recall_at_10 |
|
value: 0.11821 |
|
- type: recall_at_100 |
|
value: 0.3018 |
|
- type: recall_at_1000 |
|
value: 0.60207 |
|
- type: recall_at_3 |
|
value: 0.06839 |
|
- type: recall_at_5 |
|
value: 0.08649 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (af) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3779421654337593 |
|
- type: f1 |
|
value: 0.3681580701507746 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (am) |
|
metrics: |
|
- type: accuracy |
|
value: 0.23722259583053126 |
|
- type: f1 |
|
value: 0.23235269695764274 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ar) |
|
metrics: |
|
- type: accuracy |
|
value: 0.2964021519838601 |
|
- type: f1 |
|
value: 0.28273175327650135 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (az) |
|
metrics: |
|
- type: accuracy |
|
value: 0.39475453934095495 |
|
- type: f1 |
|
value: 0.39259973614151206 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (bn) |
|
metrics: |
|
- type: accuracy |
|
value: 0.26550100874243443 |
|
- type: f1 |
|
value: 0.25607924873522975 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (cy) |
|
metrics: |
|
- type: accuracy |
|
value: 0.38782784129119036 |
|
- type: f1 |
|
value: 0.3764180582626517 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (da) |
|
metrics: |
|
- type: accuracy |
|
value: 0.43557498318762605 |
|
- type: f1 |
|
value: 0.4135305173800667 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (de) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4039340954942838 |
|
- type: f1 |
|
value: 0.38333932195289344 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (el) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3728648285137861 |
|
- type: f1 |
|
value: 0.36640059066802844 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
metrics: |
|
- type: accuracy |
|
value: 0.5808002689979825 |
|
- type: f1 |
|
value: 0.5649243881660991 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (es) |
|
metrics: |
|
- type: accuracy |
|
value: 0.411768661735037 |
|
- type: f1 |
|
value: 0.4066779962225799 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fa) |
|
metrics: |
|
- type: accuracy |
|
value: 0.36422326832548757 |
|
- type: f1 |
|
value: 0.34644173804288503 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fi) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3875588433086752 |
|
- type: f1 |
|
value: 0.3726725894668694 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fr) |
|
metrics: |
|
- type: accuracy |
|
value: 0.43671822461331533 |
|
- type: f1 |
|
value: 0.423518466245666 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (he) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3198049764626766 |
|
- type: f1 |
|
value: 0.3055792887280901 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hi) |
|
metrics: |
|
- type: accuracy |
|
value: 0.2803967720242098 |
|
- type: f1 |
|
value: 0.28428418145508305 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hu) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3813718897108272 |
|
- type: f1 |
|
value: 0.3705740698819687 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hy) |
|
metrics: |
|
- type: accuracy |
|
value: 0.2605245460659045 |
|
- type: f1 |
|
value: 0.2525483953344816 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (id) |
|
metrics: |
|
- type: accuracy |
|
value: 0.41156691324815065 |
|
- type: f1 |
|
value: 0.40837150332476047 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (is) |
|
metrics: |
|
- type: accuracy |
|
value: 0.38628110289172835 |
|
- type: f1 |
|
value: 0.37676919012460314 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (it) |
|
metrics: |
|
- type: accuracy |
|
value: 0.440383322125084 |
|
- type: f1 |
|
value: 0.43772590108774556 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ja) |
|
metrics: |
|
- type: accuracy |
|
value: 0.46207128446536655 |
|
- type: f1 |
|
value: 0.44666328759408236 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (jv) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3760591795561533 |
|
- type: f1 |
|
value: 0.36581071742378013 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ka) |
|
metrics: |
|
- type: accuracy |
|
value: 0.24472091459314052 |
|
- type: f1 |
|
value: 0.24238209697895607 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (km) |
|
metrics: |
|
- type: accuracy |
|
value: 0.2623739071956961 |
|
- type: f1 |
|
value: 0.2537878315084505 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (kn) |
|
metrics: |
|
- type: accuracy |
|
value: 0.17831203765971754 |
|
- type: f1 |
|
value: 0.17275078420466344 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ko) |
|
metrics: |
|
- type: accuracy |
|
value: 0.37266308002689974 |
|
- type: f1 |
|
value: 0.3692473791708214 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (lv) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4093140551445864 |
|
- type: f1 |
|
value: 0.4082522788964197 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ml) |
|
metrics: |
|
- type: accuracy |
|
value: 0.1788500336247478 |
|
- type: f1 |
|
value: 0.17621569082971816 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (mn) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3297579018157364 |
|
- type: f1 |
|
value: 0.33402014633349664 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ms) |
|
metrics: |
|
- type: accuracy |
|
value: 0.40911230665770015 |
|
- type: f1 |
|
value: 0.4009538559124075 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (my) |
|
metrics: |
|
- type: accuracy |
|
value: 0.17834566240753194 |
|
- type: f1 |
|
value: 0.17006381849454313 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (nb) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3947881640887693 |
|
- type: f1 |
|
value: 0.37819934317839304 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (nl) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4176193678547412 |
|
- type: f1 |
|
value: 0.40281991759509694 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (pl) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4261936785474109 |
|
- type: f1 |
|
value: 0.40836739146499046 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (pt) |
|
metrics: |
|
- type: accuracy |
|
value: 0.44542703429724273 |
|
- type: f1 |
|
value: 0.43452431642784484 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ro) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3996973772696705 |
|
- type: f1 |
|
value: 0.3874209466530094 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ru) |
|
metrics: |
|
- type: accuracy |
|
value: 0.37461331540013454 |
|
- type: f1 |
|
value: 0.3691132021821187 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sl) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3828850033624748 |
|
- type: f1 |
|
value: 0.3737259394049676 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sq) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4095494283792872 |
|
- type: f1 |
|
value: 0.3976770790286908 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sv) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4185272360457296 |
|
- type: f1 |
|
value: 0.4042848260365438 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sw) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3832885003362475 |
|
- type: f1 |
|
value: 0.3690334596675622 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ta) |
|
metrics: |
|
- type: accuracy |
|
value: 0.19031607262945527 |
|
- type: f1 |
|
value: 0.18665103063257613 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (te) |
|
metrics: |
|
- type: accuracy |
|
value: 0.1938466711499664 |
|
- type: f1 |
|
value: 0.19186399376652535 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (th) |
|
metrics: |
|
- type: accuracy |
|
value: 0.34088769334229996 |
|
- type: f1 |
|
value: 0.3420383086009429 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (tl) |
|
metrics: |
|
- type: accuracy |
|
value: 0.40285810356422325 |
|
- type: f1 |
|
value: 0.39361500249640413 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (tr) |
|
metrics: |
|
- type: accuracy |
|
value: 0.38860121049092133 |
|
- type: f1 |
|
value: 0.3781916859627235 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ur) |
|
metrics: |
|
- type: accuracy |
|
value: 0.27834566240753195 |
|
- type: f1 |
|
value: 0.26898389386106486 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (vi) |
|
metrics: |
|
- type: accuracy |
|
value: 0.38705447209145927 |
|
- type: f1 |
|
value: 0.3828002644202441 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
metrics: |
|
- type: accuracy |
|
value: 0.45780094149293876 |
|
- type: f1 |
|
value: 0.4421526778674136 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-TW) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4232010759919301 |
|
- type: f1 |
|
value: 0.4225772977490916 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
metrics: |
|
- type: accuracy |
|
value: 0.74938225 |
|
- type: ap |
|
value: 0.6958187110320567 |
|
- type: f1 |
|
value: 0.7472744058439321 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: dbpedia-entity |
|
name: MTEB DBPedia |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.01764 |
|
- type: map_at_10 |
|
value: 0.0386 |
|
- type: map_at_100 |
|
value: 0.05457 |
|
- type: map_at_1000 |
|
value: 0.05938 |
|
- type: map_at_3 |
|
value: 0.02667 |
|
- type: map_at_5 |
|
value: 0.0322 |
|
- type: ndcg_at_1 |
|
value: 0.14 |
|
- type: ndcg_at_10 |
|
value: 0.10868 |
|
- type: ndcg_at_100 |
|
value: 0.12866 |
|
- type: ndcg_at_1000 |
|
value: 0.1743 |
|
- type: ndcg_at_3 |
|
value: 0.11943 |
|
- type: ndcg_at_5 |
|
value: 0.1166 |
|
- type: precision_at_1 |
|
value: 0.1925 |
|
- type: precision_at_10 |
|
value: 0.10275 |
|
- type: precision_at_100 |
|
value: 0.03527 |
|
- type: precision_at_1000 |
|
value: 0.00912 |
|
- type: precision_at_3 |
|
value: 0.14917 |
|
- type: precision_at_5 |
|
value: 0.135 |
|
- type: recall_at_1 |
|
value: 0.01764 |
|
- type: recall_at_10 |
|
value: 0.06609 |
|
- type: recall_at_100 |
|
value: 0.17616 |
|
- type: recall_at_1000 |
|
value: 0.33085 |
|
- type: recall_at_3 |
|
value: 0.03115 |
|
- type: recall_at_5 |
|
value: 0.04605 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fever |
|
name: MTEB FEVER |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.11497 |
|
- type: map_at_10 |
|
value: 0.15744 |
|
- type: map_at_100 |
|
value: 0.163 |
|
- type: map_at_1000 |
|
value: 0.16365 |
|
- type: map_at_3 |
|
value: 0.1444 |
|
- type: map_at_5 |
|
value: 0.1518 |
|
- type: ndcg_at_1 |
|
value: 0.12346 |
|
- type: ndcg_at_10 |
|
value: 0.18399 |
|
- type: ndcg_at_100 |
|
value: 0.21399 |
|
- type: ndcg_at_1000 |
|
value: 0.23442 |
|
- type: ndcg_at_3 |
|
value: 0.15695 |
|
- type: ndcg_at_5 |
|
value: 0.17027 |
|
- type: precision_at_1 |
|
value: 0.12346 |
|
- type: precision_at_10 |
|
value: 0.02798 |
|
- type: precision_at_100 |
|
value: 0.00445 |
|
- type: precision_at_1000 |
|
value: 0.00063 |
|
- type: precision_at_3 |
|
value: 0.06586 |
|
- type: precision_at_5 |
|
value: 0.04665 |
|
- type: recall_at_1 |
|
value: 0.11497 |
|
- type: recall_at_10 |
|
value: 0.25636 |
|
- type: recall_at_100 |
|
value: 0.39894 |
|
- type: recall_at_1000 |
|
value: 0.56181 |
|
- type: recall_at_3 |
|
value: 0.18273 |
|
- type: recall_at_5 |
|
value: 0.21474 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.12598 |
|
- type: map_at_10 |
|
value: 0.17304 |
|
- type: map_at_100 |
|
value: 0.18209 |
|
- type: map_at_1000 |
|
value: 0.18328 |
|
- type: map_at_3 |
|
value: 0.15784 |
|
- type: map_at_5 |
|
value: 0.1667 |
|
- type: ndcg_at_1 |
|
value: 0.15868 |
|
- type: ndcg_at_10 |
|
value: 0.20623 |
|
- type: ndcg_at_100 |
|
value: 0.25093 |
|
- type: ndcg_at_1000 |
|
value: 0.28498 |
|
- type: ndcg_at_3 |
|
value: 0.17912 |
|
- type: ndcg_at_5 |
|
value: 0.19198 |
|
- type: precision_at_1 |
|
value: 0.15868 |
|
- type: precision_at_10 |
|
value: 0.03767 |
|
- type: precision_at_100 |
|
value: 0.00716 |
|
- type: precision_at_1000 |
|
value: 0.00118 |
|
- type: precision_at_3 |
|
value: 0.08638 |
|
- type: precision_at_5 |
|
value: 0.0621 |
|
- type: recall_at_1 |
|
value: 0.12598 |
|
- type: recall_at_10 |
|
value: 0.27144 |
|
- type: recall_at_100 |
|
value: 0.46817 |
|
- type: recall_at_1000 |
|
value: 0.71861 |
|
- type: recall_at_3 |
|
value: 0.19231 |
|
- type: recall_at_5 |
|
value: 0.22716 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.5917638344661753 |
|
- type: cos_sim_spearman |
|
value: 0.5963676007113087 |
|
- type: euclidean_pearson |
|
value: 0.5668753290255448 |
|
- type: euclidean_spearman |
|
value: 0.5761328025857448 |
|
- type: manhattan_pearson |
|
value: 0.5692312052723706 |
|
- type: manhattan_spearman |
|
value: 0.5776774918418505 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.10322254716987457 |
|
- type: cos_sim_spearman |
|
value: 0.110033092996862 |
|
- type: euclidean_pearson |
|
value: 0.06006926471684402 |
|
- type: euclidean_spearman |
|
value: 0.10972140246688376 |
|
- type: manhattan_pearson |
|
value: 0.05933298751861177 |
|
- type: manhattan_spearman |
|
value: 0.11030111585680233 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.4338031880545056 |
|
- type: cos_sim_spearman |
|
value: 0.4305358201410913 |
|
- type: euclidean_pearson |
|
value: 0.42723271963625525 |
|
- type: euclidean_spearman |
|
value: 0.4255163899944477 |
|
- type: manhattan_pearson |
|
value: 0.44015574997805873 |
|
- type: manhattan_spearman |
|
value: 0.43124732216158546 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (pl) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.042912905043631364 |
|
- type: cos_sim_spearman |
|
value: 0.1491272748789348 |
|
- type: euclidean_pearson |
|
value: 0.032855132112394485 |
|
- type: euclidean_spearman |
|
value: 0.16575204463951024 |
|
- type: manhattan_pearson |
|
value: 0.03239877672346581 |
|
- type: manhattan_spearman |
|
value: 0.16841985772913856 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (tr) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.041027394985558165 |
|
- type: cos_sim_spearman |
|
value: 0.03818238576547375 |
|
- type: euclidean_pearson |
|
value: 0.023181033496453556 |
|
- type: euclidean_spearman |
|
value: 0.051826811802703564 |
|
- type: manhattan_pearson |
|
value: 0.04800617926525645 |
|
- type: manhattan_spearman |
|
value: 0.06738401400306251 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (ar) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.0238765395226737 |
|
- type: cos_sim_spearman |
|
value: 0.051738993911623274 |
|
- type: euclidean_pearson |
|
value: 0.030710263954769824 |
|
- type: euclidean_spearman |
|
value: 0.050492229090398195 |
|
- type: manhattan_pearson |
|
value: 0.0378263141098617 |
|
- type: manhattan_spearman |
|
value: 0.05042238232170212 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (ru) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.07673549067267635 |
|
- type: cos_sim_spearman |
|
value: 0.03363121525687889 |
|
- type: euclidean_pearson |
|
value: 0.0464331702652217 |
|
- type: euclidean_spearman |
|
value: 0.036129205171334326 |
|
- type: manhattan_pearson |
|
value: 0.040112317360761963 |
|
- type: manhattan_spearman |
|
value: 0.03233959766173701 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.0006167614416104335 |
|
- type: cos_sim_spearman |
|
value: 0.06521685391703255 |
|
- type: euclidean_pearson |
|
value: 0.048845725790690325 |
|
- type: euclidean_spearman |
|
value: 0.0559058032900239 |
|
- type: manhattan_pearson |
|
value: 0.06139838096573896 |
|
- type: manhattan_spearman |
|
value: 0.050060884837066215 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (fr) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.5319490347682836 |
|
- type: cos_sim_spearman |
|
value: 0.5456055727079527 |
|
- type: euclidean_pearson |
|
value: 0.5255574442039842 |
|
- type: euclidean_spearman |
|
value: 0.5294640154371587 |
|
- type: manhattan_pearson |
|
value: 0.532759930404542 |
|
- type: manhattan_spearman |
|
value: 0.5317456150351015 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.5115115853012214 |
|
- type: cos_sim_spearman |
|
value: 0.5392692508173665 |
|
- type: euclidean_pearson |
|
value: 0.4455629287737235 |
|
- type: euclidean_spearman |
|
value: 0.46222372143731383 |
|
- type: manhattan_pearson |
|
value: 0.42831322151459006 |
|
- type: manhattan_spearman |
|
value: 0.4570991764985799 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.30361948851267917 |
|
- type: cos_sim_spearman |
|
value: 0.32739632941633834 |
|
- type: euclidean_pearson |
|
value: 0.2983135800843496 |
|
- type: euclidean_spearman |
|
value: 0.3111440600132692 |
|
- type: manhattan_pearson |
|
value: 0.31264502938148286 |
|
- type: manhattan_spearman |
|
value: 0.33311204075347495 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (it) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.3523883630335275 |
|
- type: cos_sim_spearman |
|
value: 0.33677970820867037 |
|
- type: euclidean_pearson |
|
value: 0.34878640693874546 |
|
- type: euclidean_spearman |
|
value: 0.33525189235133496 |
|
- type: manhattan_pearson |
|
value: 0.3422761246389947 |
|
- type: manhattan_spearman |
|
value: 0.32713218497609176 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (pl-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.19809302548119545 |
|
- type: cos_sim_spearman |
|
value: 0.205403702021155 |
|
- type: euclidean_pearson |
|
value: 0.23006803962133016 |
|
- type: euclidean_spearman |
|
value: 0.2296270653079511 |
|
- type: manhattan_pearson |
|
value: 0.2540168317585851 |
|
- type: manhattan_spearman |
|
value: 0.25421508137540866 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.20393500955410487 |
|
- type: cos_sim_spearman |
|
value: 0.267057136930116 |
|
- type: euclidean_pearson |
|
value: 0.18168376767724584 |
|
- type: euclidean_spearman |
|
value: 0.19260826601517245 |
|
- type: manhattan_pearson |
|
value: 0.18302619990671526 |
|
- type: manhattan_spearman |
|
value: 0.194691037846159 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-it) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.36589199830751484 |
|
- type: cos_sim_spearman |
|
value: 0.3598972209997404 |
|
- type: euclidean_pearson |
|
value: 0.4104511254757421 |
|
- type: euclidean_spearman |
|
value: 0.39322301680629834 |
|
- type: manhattan_pearson |
|
value: 0.4136802503205308 |
|
- type: manhattan_spearman |
|
value: 0.4076270030293609 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-fr) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.26350936227950084 |
|
- type: cos_sim_spearman |
|
value: 0.25108218032460344 |
|
- type: euclidean_pearson |
|
value: 0.2861681094744849 |
|
- type: euclidean_spearman |
|
value: 0.2735099020394359 |
|
- type: manhattan_pearson |
|
value: 0.30527977072984513 |
|
- type: manhattan_spearman |
|
value: 0.2640333999064081 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-pl) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.20056269198600324 |
|
- type: cos_sim_spearman |
|
value: 0.20939990379746756 |
|
- type: euclidean_pearson |
|
value: 0.18942765438962197 |
|
- type: euclidean_spearman |
|
value: 0.21709842967237447 |
|
- type: manhattan_pearson |
|
value: 0.23643909798655122 |
|
- type: manhattan_spearman |
|
value: 0.2358828328071473 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (fr-pl) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.19563740271419394 |
|
- type: cos_sim_spearman |
|
value: 0.05634361698190111 |
|
- type: euclidean_pearson |
|
value: 0.16833522619239474 |
|
- type: euclidean_spearman |
|
value: 0.16903085094570333 |
|
- type: manhattan_pearson |
|
value: 0.058053927126608146 |
|
- type: manhattan_spearman |
|
value: 0.16903085094570333 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (af) |
|
metrics: |
|
- type: accuracy |
|
value: 0.40245460659045057 |
|
- type: f1 |
|
value: 0.3879924050989544 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (am) |
|
metrics: |
|
- type: accuracy |
|
value: 0.2568930733019502 |
|
- type: f1 |
|
value: 0.2548816627916271 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ar) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3239744451916611 |
|
- type: f1 |
|
value: 0.31863029579075774 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (az) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4053127101546738 |
|
- type: f1 |
|
value: 0.39707079033948933 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (bn) |
|
metrics: |
|
- type: accuracy |
|
value: 0.2723268325487559 |
|
- type: f1 |
|
value: 0.2644365328185879 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (cy) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3869872225958305 |
|
- type: f1 |
|
value: 0.3655930387892567 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (da) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4475453934095494 |
|
- type: f1 |
|
value: 0.4287356484024154 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (de) |
|
metrics: |
|
- type: accuracy |
|
value: 0.41355077336919976 |
|
- type: f1 |
|
value: 0.3982365179458047 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (el) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3843981170141224 |
|
- type: f1 |
|
value: 0.3702538368296387 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
metrics: |
|
- type: accuracy |
|
value: 0.6633826496301277 |
|
- type: f1 |
|
value: 0.6589634765029931 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (es) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4417955615332885 |
|
- type: f1 |
|
value: 0.4310228811620319 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fa) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3482851378614661 |
|
- type: f1 |
|
value: 0.33959524415028025 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fi) |
|
metrics: |
|
- type: accuracy |
|
value: 0.40561533288500334 |
|
- type: f1 |
|
value: 0.38049390117336274 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fr) |
|
metrics: |
|
- type: accuracy |
|
value: 0.45917955615332884 |
|
- type: f1 |
|
value: 0.4465741971572902 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (he) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3208473436449227 |
|
- type: f1 |
|
value: 0.2953932929808133 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hi) |
|
metrics: |
|
- type: accuracy |
|
value: 0.28369199731002015 |
|
- type: f1 |
|
value: 0.2752902837981212 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hu) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3949226630800269 |
|
- type: f1 |
|
value: 0.37327234047050406 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hy) |
|
metrics: |
|
- type: accuracy |
|
value: 0.2590450571620713 |
|
- type: f1 |
|
value: 0.24547396574853445 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (id) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4095830531271016 |
|
- type: f1 |
|
value: 0.40177843177422223 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (is) |
|
metrics: |
|
- type: accuracy |
|
value: 0.38564223268325487 |
|
- type: f1 |
|
value: 0.3735307758495248 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (it) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4658708809683928 |
|
- type: f1 |
|
value: 0.44103900526804984 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ja) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4624747814391393 |
|
- type: f1 |
|
value: 0.454107101796664 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (jv) |
|
metrics: |
|
- type: accuracy |
|
value: 0.396570275722932 |
|
- type: f1 |
|
value: 0.3882737576832412 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ka) |
|
metrics: |
|
- type: accuracy |
|
value: 0.2527908540685945 |
|
- type: f1 |
|
value: 0.23662661686788491 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (km) |
|
metrics: |
|
- type: accuracy |
|
value: 0.2897108271687962 |
|
- type: f1 |
|
value: 0.27195758324189245 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (kn) |
|
metrics: |
|
- type: accuracy |
|
value: 0.1927370544720915 |
|
- type: f1 |
|
value: 0.18694271924323635 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ko) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3572965702757229 |
|
- type: f1 |
|
value: 0.3438287006177308 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (lv) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3957296570275723 |
|
- type: f1 |
|
value: 0.38074945140886923 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ml) |
|
metrics: |
|
- type: accuracy |
|
value: 0.19895763281775386 |
|
- type: f1 |
|
value: 0.20009313648468288 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (mn) |
|
metrics: |
|
- type: accuracy |
|
value: 0.32431069266980495 |
|
- type: f1 |
|
value: 0.31395958664782575 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ms) |
|
metrics: |
|
- type: accuracy |
|
value: 0.42323470073974445 |
|
- type: f1 |
|
value: 0.4081374026314701 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (my) |
|
metrics: |
|
- type: accuracy |
|
value: 0.20864156018829857 |
|
- type: f1 |
|
value: 0.20409870408935435 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (nb) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4047074646940148 |
|
- type: f1 |
|
value: 0.3919044149415904 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (nl) |
|
metrics: |
|
- type: accuracy |
|
value: 0.43591123066577 |
|
- type: f1 |
|
value: 0.4143420363064241 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (pl) |
|
metrics: |
|
- type: accuracy |
|
value: 0.41876260928043046 |
|
- type: f1 |
|
value: 0.4119211767666761 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (pt) |
|
metrics: |
|
- type: accuracy |
|
value: 0.46308002689979827 |
|
- type: f1 |
|
value: 0.4525536730126799 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ro) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4252521856086079 |
|
- type: f1 |
|
value: 0.4102418109296485 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ru) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3594821788836584 |
|
- type: f1 |
|
value: 0.3508598314806566 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sl) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3869199731002017 |
|
- type: f1 |
|
value: 0.3768119408674127 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sq) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4047410894418292 |
|
- type: f1 |
|
value: 0.39480530387013596 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sv) |
|
metrics: |
|
- type: accuracy |
|
value: 0.41523201075991933 |
|
- type: f1 |
|
value: 0.40200979960243827 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sw) |
|
metrics: |
|
- type: accuracy |
|
value: 0.39549428379287155 |
|
- type: f1 |
|
value: 0.3818556124333806 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ta) |
|
metrics: |
|
- type: accuracy |
|
value: 0.228782784129119 |
|
- type: f1 |
|
value: 0.22239467186721457 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (te) |
|
metrics: |
|
- type: accuracy |
|
value: 0.2051445864156019 |
|
- type: f1 |
|
value: 0.1999904788553022 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (th) |
|
metrics: |
|
- type: accuracy |
|
value: 0.34926025554808343 |
|
- type: f1 |
|
value: 0.33240167172157226 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (tl) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4074983187626093 |
|
- type: f1 |
|
value: 0.3930274328728882 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (tr) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3906859448554136 |
|
- type: f1 |
|
value: 0.39215420396629713 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ur) |
|
metrics: |
|
- type: accuracy |
|
value: 0.29747814391392063 |
|
- type: f1 |
|
value: 0.2826183689222045 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (vi) |
|
metrics: |
|
- type: accuracy |
|
value: 0.3802286482851379 |
|
- type: f1 |
|
value: 0.37874243860869694 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
metrics: |
|
- type: accuracy |
|
value: 0.48550773369199723 |
|
- type: f1 |
|
value: 0.46739962588264905 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-TW) |
|
metrics: |
|
- type: accuracy |
|
value: 0.45178211163416276 |
|
- type: f1 |
|
value: 0.4484809741811729 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.61697 |
|
- type: map_at_10 |
|
value: 0.74204 |
|
- type: map_at_100 |
|
value: 0.75023 |
|
- type: map_at_1000 |
|
value: 0.75059 |
|
- type: map_at_3 |
|
value: 0.71265 |
|
- type: map_at_5 |
|
value: 0.73001 |
|
- type: ndcg_at_1 |
|
value: 0.7095 |
|
- type: ndcg_at_10 |
|
value: 0.7896 |
|
- type: ndcg_at_100 |
|
value: 0.8126 |
|
- type: ndcg_at_1000 |
|
value: 0.81679 |
|
- type: ndcg_at_3 |
|
value: 0.75246 |
|
- type: ndcg_at_5 |
|
value: 0.77092 |
|
- type: precision_at_1 |
|
value: 0.7095 |
|
- type: precision_at_10 |
|
value: 0.11998 |
|
- type: precision_at_100 |
|
value: 0.01451 |
|
- type: precision_at_1000 |
|
value: 0.00154 |
|
- type: precision_at_3 |
|
value: 0.3263 |
|
- type: precision_at_5 |
|
value: 0.21574 |
|
- type: recall_at_1 |
|
value: 0.61697 |
|
- type: recall_at_10 |
|
value: 0.88233 |
|
- type: recall_at_100 |
|
value: 0.96961 |
|
- type: recall_at_1000 |
|
value: 0.99401 |
|
- type: recall_at_3 |
|
value: 0.77689 |
|
- type: recall_at_5 |
|
value: 0.82745 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.8096286245858941 |
|
- type: cos_sim_spearman |
|
value: 0.7457093488947429 |
|
- type: euclidean_pearson |
|
value: 0.7550377970259401 |
|
- type: euclidean_spearman |
|
value: 0.7174980046229991 |
|
- type: manhattan_pearson |
|
value: 0.7532568360913819 |
|
- type: manhattan_spearman |
|
value: 0.7180676733410375 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 0.8663018589668956 |
|
- type: cos_sim_accuracy_threshold |
|
value: 0.6738145351409912 |
|
- type: cos_sim_ap |
|
value: 0.805106377126291 |
|
- type: cos_sim_f1 |
|
value: 0.7270810586950793 |
|
- type: cos_sim_f1_threshold |
|
value: 0.6406128406524658 |
|
- type: cos_sim_precision |
|
value: 0.7114123627790466 |
|
- type: cos_sim_recall |
|
value: 0.743455497382199 |
|
- type: dot_accuracy |
|
value: 0.8241743315092949 |
|
- type: dot_accuracy_threshold |
|
value: 967.1823120117188 |
|
- type: dot_ap |
|
value: 0.692393381283664 |
|
- type: dot_f1 |
|
value: 0.6561346624814597 |
|
- type: dot_f1_threshold |
|
value: 831.1060791015625 |
|
- type: dot_precision |
|
value: 0.5943260638630257 |
|
- type: dot_recall |
|
value: 0.7322913458577148 |
|
- type: euclidean_accuracy |
|
value: 0.8649435324251951 |
|
- type: euclidean_accuracy_threshold |
|
value: 30.077878952026367 |
|
- type: euclidean_ap |
|
value: 0.8028100477250927 |
|
- type: euclidean_f1 |
|
value: 0.7258242344489099 |
|
- type: euclidean_f1_threshold |
|
value: 32.570228576660156 |
|
- type: euclidean_precision |
|
value: 0.6744662568576906 |
|
- type: euclidean_recall |
|
value: 0.7856482907299045 |
|
- type: manhattan_accuracy |
|
value: 0.8659525749990298 |
|
- type: manhattan_accuracy_threshold |
|
value: 625.0921020507812 |
|
- type: manhattan_ap |
|
value: 0.8037850832566262 |
|
- type: manhattan_f1 |
|
value: 0.7259435321233073 |
|
- type: manhattan_f1_threshold |
|
value: 679.8679809570312 |
|
- type: manhattan_precision |
|
value: 0.6819350473612991 |
|
- type: manhattan_recall |
|
value: 0.7760240221743148 |
|
- type: max_accuracy |
|
value: 0.8663018589668956 |
|
- type: max_ap |
|
value: 0.805106377126291 |
|
- type: max_f1 |
|
value: 0.7270810586950793 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
metrics: |
|
- type: v_measure |
|
value: 0.23080939123955474 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (ko-ko) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.430464619152799 |
|
- type: cos_sim_spearman |
|
value: 0.4565606588928089 |
|
- type: euclidean_pearson |
|
value: 0.45694377883554993 |
|
- type: euclidean_spearman |
|
value: 0.4508552742346606 |
|
- type: manhattan_pearson |
|
value: 0.45871666989036813 |
|
- type: manhattan_spearman |
|
value: 0.45155963016434164 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (ar-ar) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.5327469278912148 |
|
- type: cos_sim_spearman |
|
value: 0.541611320762379 |
|
- type: euclidean_pearson |
|
value: 0.5597026429327157 |
|
- type: euclidean_spearman |
|
value: 0.5471320909074608 |
|
- type: manhattan_pearson |
|
value: 0.5612511774278802 |
|
- type: manhattan_spearman |
|
value: 0.5522875659158676 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-ar) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.015482997790039945 |
|
- type: cos_sim_spearman |
|
value: 0.01720838634736358 |
|
- type: euclidean_pearson |
|
value: 0.06727915670345885 |
|
- type: euclidean_spearman |
|
value: 0.06112826908474543 |
|
- type: manhattan_pearson |
|
value: 0.0494386093060865 |
|
- type: manhattan_spearman |
|
value: 0.05018174110623732 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-de) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.275420218362265 |
|
- type: cos_sim_spearman |
|
value: 0.2548383843103101 |
|
- type: euclidean_pearson |
|
value: 0.06268684143856358 |
|
- type: euclidean_spearman |
|
value: 0.058779614210916785 |
|
- type: manhattan_pearson |
|
value: 0.026672377392278606 |
|
- type: manhattan_spearman |
|
value: 0.025683839956554773 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.8532029757646663 |
|
- type: cos_sim_spearman |
|
value: 0.8732720847297224 |
|
- type: euclidean_pearson |
|
value: 0.8112594485791255 |
|
- type: euclidean_spearman |
|
value: 0.811531079489332 |
|
- type: manhattan_pearson |
|
value: 0.8132899414704019 |
|
- type: manhattan_spearman |
|
value: 0.813897040261192 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-tr) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.0437162299241808 |
|
- type: cos_sim_spearman |
|
value: 0.020879072561774542 |
|
- type: euclidean_pearson |
|
value: 0.030725243785454597 |
|
- type: euclidean_spearman |
|
value: 0.05372133927948353 |
|
- type: manhattan_pearson |
|
value: 0.04867795293367359 |
|
- type: manhattan_spearman |
|
value: 0.07939706984001878 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.20306030448858603 |
|
- type: cos_sim_spearman |
|
value: 0.2193220782551375 |
|
- type: euclidean_pearson |
|
value: 0.03878631934602361 |
|
- type: euclidean_spearman |
|
value: 0.05171796902725965 |
|
- type: manhattan_pearson |
|
value: 0.0713020644036815 |
|
- type: manhattan_spearman |
|
value: 0.07707315591498748 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-es) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.6681873207478459 |
|
- type: cos_sim_spearman |
|
value: 0.6780273445636502 |
|
- type: euclidean_pearson |
|
value: 0.7060654682977268 |
|
- type: euclidean_spearman |
|
value: 0.694566208379486 |
|
- type: manhattan_pearson |
|
value: 0.7095484618966419 |
|
- type: manhattan_spearman |
|
value: 0.6978323323058773 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (fr-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.21366487281202604 |
|
- type: cos_sim_spearman |
|
value: 0.18906275286984808 |
|
- type: euclidean_pearson |
|
value: 0.023390998579461995 |
|
- type: euclidean_spearman |
|
value: 0.04151213674012541 |
|
- type: manhattan_pearson |
|
value: 0.02234831868844863 |
|
- type: manhattan_spearman |
|
value: 0.045552913285014415 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (it-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.20731531772510847 |
|
- type: cos_sim_spearman |
|
value: 0.163855949033176 |
|
- type: euclidean_pearson |
|
value: 0.08734648741714238 |
|
- type: euclidean_spearman |
|
value: 0.1075672244732182 |
|
- type: manhattan_pearson |
|
value: 0.07536654126608877 |
|
- type: manhattan_spearman |
|
value: 0.08330065460047295 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (nl-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.2661843502408425 |
|
- type: cos_sim_spearman |
|
value: 0.23488974089577816 |
|
- type: euclidean_pearson |
|
value: 0.031310350304707864 |
|
- type: euclidean_spearman |
|
value: 0.031242598481634666 |
|
- type: manhattan_pearson |
|
value: 0.011096752982707007 |
|
- type: manhattan_spearman |
|
value: 0.014591693078765849 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: trec-covid |
|
name: MTEB TRECCOVID |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.00113 |
|
- type: map_at_10 |
|
value: 0.00733 |
|
- type: map_at_100 |
|
value: 0.03313 |
|
- type: map_at_1000 |
|
value: 0.07355 |
|
- type: map_at_3 |
|
value: 0.00282 |
|
- type: map_at_5 |
|
value: 0.00414 |
|
- type: ndcg_at_1 |
|
value: 0.42 |
|
- type: ndcg_at_10 |
|
value: 0.3931 |
|
- type: ndcg_at_100 |
|
value: 0.26904 |
|
- type: ndcg_at_1000 |
|
value: 0.23778 |
|
- type: ndcg_at_3 |
|
value: 0.42776 |
|
- type: ndcg_at_5 |
|
value: 0.41554 |
|
- type: precision_at_1 |
|
value: 0.48 |
|
- type: precision_at_10 |
|
value: 0.43 |
|
- type: precision_at_100 |
|
value: 0.2708 |
|
- type: precision_at_1000 |
|
value: 0.11014 |
|
- type: precision_at_3 |
|
value: 0.48 |
|
- type: precision_at_5 |
|
value: 0.456 |
|
- type: recall_at_1 |
|
value: 0.00113 |
|
- type: recall_at_10 |
|
value: 0.00976 |
|
- type: recall_at_100 |
|
value: 0.05888 |
|
- type: recall_at_1000 |
|
value: 0.22635 |
|
- type: recall_at_3 |
|
value: 0.00329 |
|
- type: recall_at_5 |
|
value: 0.00518 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scifact |
|
name: MTEB SciFact |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.21556 |
|
- type: map_at_10 |
|
value: 0.27982 |
|
- type: map_at_100 |
|
value: 0.28937 |
|
- type: map_at_1000 |
|
value: 0.29058 |
|
- type: map_at_3 |
|
value: 0.25644 |
|
- type: map_at_5 |
|
value: 0.26996 |
|
- type: ndcg_at_1 |
|
value: 0.23333 |
|
- type: ndcg_at_10 |
|
value: 0.31787 |
|
- type: ndcg_at_100 |
|
value: 0.36648 |
|
- type: ndcg_at_1000 |
|
value: 0.39936 |
|
- type: ndcg_at_3 |
|
value: 0.27299 |
|
- type: ndcg_at_5 |
|
value: 0.29659 |
|
- type: precision_at_1 |
|
value: 0.23333 |
|
- type: precision_at_10 |
|
value: 0.04867 |
|
- type: precision_at_100 |
|
value: 0.00743 |
|
- type: precision_at_1000 |
|
value: 0.00102 |
|
- type: precision_at_3 |
|
value: 0.11333 |
|
- type: precision_at_5 |
|
value: 0.08133 |
|
- type: recall_at_1 |
|
value: 0.21556 |
|
- type: recall_at_10 |
|
value: 0.42333 |
|
- type: recall_at_100 |
|
value: 0.65706 |
|
- type: recall_at_1000 |
|
value: 0.91489 |
|
- type: recall_at_3 |
|
value: 0.30361 |
|
- type: recall_at_5 |
|
value: 0.36222 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scidocs |
|
name: MTEB SCIDOCS |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.0172 |
|
- type: map_at_10 |
|
value: 0.03824 |
|
- type: map_at_100 |
|
value: 0.04727 |
|
- type: map_at_1000 |
|
value: 0.04932 |
|
- type: map_at_3 |
|
value: 0.02867 |
|
- type: map_at_5 |
|
value: 0.03323 |
|
- type: ndcg_at_1 |
|
value: 0.085 |
|
- type: ndcg_at_10 |
|
value: 0.07133 |
|
- type: ndcg_at_100 |
|
value: 0.11911 |
|
- type: ndcg_at_1000 |
|
value: 0.16962 |
|
- type: ndcg_at_3 |
|
value: 0.06763 |
|
- type: ndcg_at_5 |
|
value: 0.05832 |
|
- type: precision_at_1 |
|
value: 0.085 |
|
- type: precision_at_10 |
|
value: 0.0368 |
|
- type: precision_at_100 |
|
value: 0.01067 |
|
- type: precision_at_1000 |
|
value: 0.0023 |
|
- type: precision_at_3 |
|
value: 0.06233 |
|
- type: precision_at_5 |
|
value: 0.0502 |
|
- type: recall_at_1 |
|
value: 0.0172 |
|
- type: recall_at_10 |
|
value: 0.07487 |
|
- type: recall_at_100 |
|
value: 0.21683 |
|
- type: recall_at_1000 |
|
value: 0.46688 |
|
- type: recall_at_3 |
|
value: 0.03798 |
|
- type: recall_at_5 |
|
value: 0.05113 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nq |
|
name: MTEB NQ |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.03515 |
|
- type: map_at_10 |
|
value: 0.05884 |
|
- type: map_at_100 |
|
value: 0.0651 |
|
- type: map_at_1000 |
|
value: 0.06599 |
|
- type: map_at_3 |
|
value: 0.04892 |
|
- type: map_at_5 |
|
value: 0.05391 |
|
- type: ndcg_at_1 |
|
value: 0.04056 |
|
- type: ndcg_at_10 |
|
value: 0.07626 |
|
- type: ndcg_at_100 |
|
value: 0.1108 |
|
- type: ndcg_at_1000 |
|
value: 0.13793 |
|
- type: ndcg_at_3 |
|
value: 0.05537 |
|
- type: ndcg_at_5 |
|
value: 0.0645 |
|
- type: precision_at_1 |
|
value: 0.04056 |
|
- type: precision_at_10 |
|
value: 0.01457 |
|
- type: precision_at_100 |
|
value: 0.00347 |
|
- type: precision_at_1000 |
|
value: 0.00061 |
|
- type: precision_at_3 |
|
value: 0.02607 |
|
- type: precision_at_5 |
|
value: 0.02086 |
|
- type: recall_at_1 |
|
value: 0.03515 |
|
- type: recall_at_10 |
|
value: 0.12312 |
|
- type: recall_at_100 |
|
value: 0.28713 |
|
- type: recall_at_1000 |
|
value: 0.50027 |
|
- type: recall_at_3 |
|
value: 0.06701 |
|
- type: recall_at_5 |
|
value: 0.08816 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.7604750373932828 |
|
- type: cos_sim_spearman |
|
value: 0.7793230986462234 |
|
- type: euclidean_pearson |
|
value: 0.758320302521164 |
|
- type: euclidean_spearman |
|
value: 0.7683154481579385 |
|
- type: manhattan_pearson |
|
value: 0.7598713517720608 |
|
- type: manhattan_spearman |
|
value: 0.7695479705521506 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
metrics: |
|
- type: accuracy |
|
value: 0.42225 |
|
- type: f1 |
|
value: 0.3756351654211211 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.13757 |
|
- type: map_at_10 |
|
value: 0.1927 |
|
- type: map_at_100 |
|
value: 0.20461 |
|
- type: map_at_1000 |
|
value: 0.20641 |
|
- type: map_at_3 |
|
value: 0.17865 |
|
- type: map_at_5 |
|
value: 0.18618 |
|
- type: ndcg_at_1 |
|
value: 0.16996 |
|
- type: ndcg_at_10 |
|
value: 0.22774 |
|
- type: ndcg_at_100 |
|
value: 0.27675 |
|
- type: ndcg_at_1000 |
|
value: 0.31145 |
|
- type: ndcg_at_3 |
|
value: 0.20691 |
|
- type: ndcg_at_5 |
|
value: 0.21741 |
|
- type: precision_at_1 |
|
value: 0.16996 |
|
- type: precision_at_10 |
|
value: 0.04545 |
|
- type: precision_at_100 |
|
value: 0.01036 |
|
- type: precision_at_1000 |
|
value: 0.00185 |
|
- type: precision_at_3 |
|
value: 0.10145 |
|
- type: precision_at_5 |
|
value: 0.07391 |
|
- type: recall_at_1 |
|
value: 0.13757 |
|
- type: recall_at_10 |
|
value: 0.28234 |
|
- type: recall_at_100 |
|
value: 0.51055 |
|
- type: recall_at_1000 |
|
value: 0.75353 |
|
- type: recall_at_3 |
|
value: 0.21794 |
|
- type: recall_at_5 |
|
value: 0.24614 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
metrics: |
|
- type: v_measure |
|
value: 0.41007999100992665 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.11351 |
|
- type: map_at_10 |
|
value: 0.14953 |
|
- type: map_at_100 |
|
value: 0.15623 |
|
- type: map_at_1000 |
|
value: 0.15716 |
|
- type: map_at_3 |
|
value: 0.13603 |
|
- type: map_at_5 |
|
value: 0.14343 |
|
- type: ndcg_at_1 |
|
value: 0.12429 |
|
- type: ndcg_at_10 |
|
value: 0.17319 |
|
- type: ndcg_at_100 |
|
value: 0.2099 |
|
- type: ndcg_at_1000 |
|
value: 0.23899 |
|
- type: ndcg_at_3 |
|
value: 0.14605 |
|
- type: ndcg_at_5 |
|
value: 0.1589 |
|
- type: precision_at_1 |
|
value: 0.12429 |
|
- type: precision_at_10 |
|
value: 0.02701 |
|
- type: precision_at_100 |
|
value: 0.00487 |
|
- type: precision_at_1000 |
|
value: 0.00078 |
|
- type: precision_at_3 |
|
value: 0.06026 |
|
- type: precision_at_5 |
|
value: 0.04384 |
|
- type: recall_at_1 |
|
value: 0.11351 |
|
- type: recall_at_10 |
|
value: 0.23536 |
|
- type: recall_at_100 |
|
value: 0.40942 |
|
- type: recall_at_1000 |
|
value: 0.6405 |
|
- type: recall_at_3 |
|
value: 0.16195 |
|
- type: recall_at_5 |
|
value: 0.19264 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.8000905671833967 |
|
- type: cos_sim_spearman |
|
value: 0.7954269211027273 |
|
- type: euclidean_pearson |
|
value: 0.7951954544247442 |
|
- type: euclidean_spearman |
|
value: 0.7893670303434288 |
|
- type: manhattan_pearson |
|
value: 0.7947610653340678 |
|
- type: manhattan_spearman |
|
value: 0.7907344156719612 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
metrics: |
|
- type: accuracy |
|
value: 0.7467857142857142 |
|
- type: f1 |
|
value: 0.7461743413995573 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.12307 |
|
- type: map_at_10 |
|
value: 0.1544 |
|
- type: map_at_100 |
|
value: 0.16033 |
|
- type: map_at_1000 |
|
value: 0.1614 |
|
- type: map_at_3 |
|
value: 0.14393 |
|
- type: map_at_5 |
|
value: 0.14856 |
|
- type: ndcg_at_1 |
|
value: 0.14571 |
|
- type: ndcg_at_10 |
|
value: 0.17685 |
|
- type: ndcg_at_100 |
|
value: 0.20882 |
|
- type: ndcg_at_1000 |
|
value: 0.23888 |
|
- type: ndcg_at_3 |
|
value: 0.15739 |
|
- type: ndcg_at_5 |
|
value: 0.16391 |
|
- type: precision_at_1 |
|
value: 0.14571 |
|
- type: precision_at_10 |
|
value: 0.02883 |
|
- type: precision_at_100 |
|
value: 0.00491 |
|
- type: precision_at_1000 |
|
value: 0.0008 |
|
- type: precision_at_3 |
|
value: 0.07004 |
|
- type: precision_at_5 |
|
value: 0.04693 |
|
- type: recall_at_1 |
|
value: 0.12307 |
|
- type: recall_at_10 |
|
value: 0.22566 |
|
- type: recall_at_100 |
|
value: 0.37469 |
|
- type: recall_at_1000 |
|
value: 0.6055 |
|
- type: recall_at_3 |
|
value: 0.16742 |
|
- type: recall_at_5 |
|
value: 0.18634 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.7278000135012542 |
|
- type: cos_sim_spearman |
|
value: 0.7092812216947605 |
|
- type: euclidean_pearson |
|
value: 0.771169214949292 |
|
- type: euclidean_spearman |
|
value: 0.7710175681583312 |
|
- type: manhattan_pearson |
|
value: 0.7684527031837596 |
|
- type: manhattan_spearman |
|
value: 0.7707043080084379 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
metrics: |
|
- type: v_measure |
|
value: 0.2893427045246491 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
metrics: |
|
- type: v_measure |
|
value: 0.28230204578753637 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
metrics: |
|
- type: accuracy |
|
value: 0.627862 |
|
- type: ap |
|
value: 0.10958454618347832 |
|
- type: f1 |
|
value: 0.48372434170467626 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
metrics: |
|
- type: v_measure |
|
value: 0.2824295128553035 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 0.815640460153782 |
|
- type: cos_sim_accuracy_threshold |
|
value: 0.7118978500366211 |
|
- type: cos_sim_ap |
|
value: 0.5709409536692154 |
|
- type: cos_sim_f1 |
|
value: 0.5529607083563918 |
|
- type: cos_sim_f1_threshold |
|
value: 0.5981647968292236 |
|
- type: cos_sim_precision |
|
value: 0.47626310772163966 |
|
- type: cos_sim_recall |
|
value: 0.6591029023746702 |
|
- type: dot_accuracy |
|
value: 0.788162365142755 |
|
- type: dot_accuracy_threshold |
|
value: 1049.799072265625 |
|
- type: dot_ap |
|
value: 0.4742989400382077 |
|
- type: dot_f1 |
|
value: 0.5125944584382871 |
|
- type: dot_f1_threshold |
|
value: 723.3736572265625 |
|
- type: dot_precision |
|
value: 0.4255838271174625 |
|
- type: dot_recall |
|
value: 0.6443271767810026 |
|
- type: euclidean_accuracy |
|
value: 0.8029445073612684 |
|
- type: euclidean_accuracy_threshold |
|
value: 26.134265899658203 |
|
- type: euclidean_ap |
|
value: 0.5342012231336148 |
|
- type: euclidean_f1 |
|
value: 0.5186778356350464 |
|
- type: euclidean_f1_threshold |
|
value: 31.25627326965332 |
|
- type: euclidean_precision |
|
value: 0.454203013481364 |
|
- type: euclidean_recall |
|
value: 0.604485488126649 |
|
- type: manhattan_accuracy |
|
value: 0.802884901949097 |
|
- type: manhattan_accuracy_threshold |
|
value: 560.0760498046875 |
|
- type: manhattan_ap |
|
value: 0.5343205271323233 |
|
- type: manhattan_f1 |
|
value: 0.520141655599823 |
|
- type: manhattan_f1_threshold |
|
value: 658.3975830078125 |
|
- type: manhattan_precision |
|
value: 0.44796035074342355 |
|
- type: manhattan_recall |
|
value: 0.6200527704485488 |
|
- type: max_accuracy |
|
value: 0.815640460153782 |
|
- type: max_ap |
|
value: 0.5709409536692154 |
|
- type: max_f1 |
|
value: 0.5529607083563918 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
metrics: |
|
- type: accuracy |
|
value: 0.582421340629275 |
|
- type: f1 |
|
value: 0.40116960466226426 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (de) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4506903353057199 |
|
- type: f1 |
|
value: 0.30468468273374966 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (es) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4880920613742495 |
|
- type: f1 |
|
value: 0.3265985375400447 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (fr) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4433761352959599 |
|
- type: f1 |
|
value: 0.2930204743560644 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (hi) |
|
metrics: |
|
- type: accuracy |
|
value: 0.34198637504481894 |
|
- type: f1 |
|
value: 0.2206370603224841 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (th) |
|
metrics: |
|
- type: accuracy |
|
value: 0.4311030741410488 |
|
- type: f1 |
|
value: 0.2692408933648504 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
metrics: |
|
- type: v_measure |
|
value: 0.3375741018380938 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.13909 |
|
- type: map_at_10 |
|
value: 0.19256 |
|
- type: map_at_100 |
|
value: 0.20286 |
|
- type: map_at_1000 |
|
value: 0.20429 |
|
- type: map_at_3 |
|
value: 0.17399 |
|
- type: map_at_5 |
|
value: 0.18399 |
|
- type: ndcg_at_1 |
|
value: 0.17421 |
|
- type: ndcg_at_10 |
|
value: 0.23106 |
|
- type: ndcg_at_100 |
|
value: 0.28129 |
|
- type: ndcg_at_1000 |
|
value: 0.31481 |
|
- type: ndcg_at_3 |
|
value: 0.19789 |
|
- type: ndcg_at_5 |
|
value: 0.21237 |
|
- type: precision_at_1 |
|
value: 0.17421 |
|
- type: precision_at_10 |
|
value: 0.04331 |
|
- type: precision_at_100 |
|
value: 0.00839 |
|
- type: precision_at_1000 |
|
value: 0.00131 |
|
- type: precision_at_3 |
|
value: 0.094 |
|
- type: precision_at_5 |
|
value: 0.06776 |
|
- type: recall_at_1 |
|
value: 0.13909 |
|
- type: recall_at_10 |
|
value: 0.31087 |
|
- type: recall_at_100 |
|
value: 0.52946 |
|
- type: recall_at_1000 |
|
value: 0.76546 |
|
- type: recall_at_3 |
|
value: 0.21351 |
|
- type: recall_at_5 |
|
value: 0.25265 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
metrics: |
|
- type: map |
|
value: 0.3996520488022785 |
|
- type: mrr |
|
value: 0.40189248047703935 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.12738416666666666 |
|
- type: map_at_10 |
|
value: 0.17235916666666667 |
|
- type: map_at_100 |
|
value: 0.1806333333333333 |
|
- type: map_at_1000 |
|
value: 0.18184333333333333 |
|
- type: map_at_3 |
|
value: 0.1574775 |
|
- type: map_at_5 |
|
value: 0.1657825 |
|
- type: ndcg_at_1 |
|
value: 0.15487416666666665 |
|
- type: ndcg_at_10 |
|
value: 0.20290166666666667 |
|
- type: ndcg_at_100 |
|
value: 0.24412916666666662 |
|
- type: ndcg_at_1000 |
|
value: 0.27586333333333335 |
|
- type: ndcg_at_3 |
|
value: 0.17622083333333333 |
|
- type: ndcg_at_5 |
|
value: 0.18859916666666668 |
|
- type: precision_at_1 |
|
value: 0.15487416666666665 |
|
- type: precision_at_10 |
|
value: 0.036226666666666664 |
|
- type: precision_at_100 |
|
value: 0.006820833333333333 |
|
- type: precision_at_1000 |
|
value: 0.0011216666666666666 |
|
- type: precision_at_3 |
|
value: 0.08163749999999999 |
|
- type: precision_at_5 |
|
value: 0.058654166666666674 |
|
- type: recall_at_1 |
|
value: 0.12738416666666666 |
|
- type: recall_at_10 |
|
value: 0.26599416666666664 |
|
- type: recall_at_100 |
|
value: 0.4541258333333334 |
|
- type: recall_at_1000 |
|
value: 0.687565 |
|
- type: recall_at_3 |
|
value: 0.19008166666666668 |
|
- type: recall_at_5 |
|
value: 0.2224991666666667 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 0.9949306930693069 |
|
- type: cos_sim_accuracy_threshold |
|
value: 0.7870972752571106 |
|
- type: cos_sim_ap |
|
value: 0.7773085502917281 |
|
- type: cos_sim_f1 |
|
value: 0.7178978681209718 |
|
- type: cos_sim_f1_threshold |
|
value: 0.7572916746139526 |
|
- type: cos_sim_precision |
|
value: 0.711897738446411 |
|
- type: cos_sim_recall |
|
value: 0.724 |
|
- type: dot_accuracy |
|
value: 0.9908118811881188 |
|
- type: dot_accuracy_threshold |
|
value: 1571.5850830078125 |
|
- type: dot_ap |
|
value: 0.30267748833368235 |
|
- type: dot_f1 |
|
value: 0.34335201222618444 |
|
- type: dot_f1_threshold |
|
value: 1329.530029296875 |
|
- type: dot_precision |
|
value: 0.34994807892004154 |
|
- type: dot_recall |
|
value: 0.337 |
|
- type: euclidean_accuracy |
|
value: 0.9951683168316832 |
|
- type: euclidean_accuracy_threshold |
|
value: 25.715721130371094 |
|
- type: euclidean_ap |
|
value: 0.7864498778235628 |
|
- type: euclidean_f1 |
|
value: 0.7309149972929074 |
|
- type: euclidean_f1_threshold |
|
value: 26.336116790771484 |
|
- type: euclidean_precision |
|
value: 0.7969303423848878 |
|
- type: euclidean_recall |
|
value: 0.675 |
|
- type: manhattan_accuracy |
|
value: 0.9953168316831683 |
|
- type: manhattan_accuracy_threshold |
|
value: 534.224609375 |
|
- type: manhattan_ap |
|
value: 0.7945274878693959 |
|
- type: manhattan_f1 |
|
value: 0.7419863373620599 |
|
- type: manhattan_f1_threshold |
|
value: 562.244140625 |
|
- type: manhattan_precision |
|
value: 0.7818383167220376 |
|
- type: manhattan_recall |
|
value: 0.706 |
|
- type: max_accuracy |
|
value: 0.9953168316831683 |
|
- type: max_ap |
|
value: 0.7945274878693959 |
|
- type: max_f1 |
|
value: 0.7419863373620599 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.09057 |
|
- type: map_at_10 |
|
value: 0.12721 |
|
- type: map_at_100 |
|
value: 0.1345 |
|
- type: map_at_1000 |
|
value: 0.13564 |
|
- type: map_at_3 |
|
value: 0.1134 |
|
- type: map_at_5 |
|
value: 0.12245 |
|
- type: ndcg_at_1 |
|
value: 0.09797 |
|
- type: ndcg_at_10 |
|
value: 0.15091 |
|
- type: ndcg_at_100 |
|
value: 0.18886 |
|
- type: ndcg_at_1000 |
|
value: 0.2229 |
|
- type: ndcg_at_3 |
|
value: 0.12365 |
|
- type: ndcg_at_5 |
|
value: 0.13931 |
|
- type: precision_at_1 |
|
value: 0.09797 |
|
- type: precision_at_10 |
|
value: 0.02477 |
|
- type: precision_at_100 |
|
value: 0.00466 |
|
- type: precision_at_1000 |
|
value: 0.00082 |
|
- type: precision_at_3 |
|
value: 0.05299 |
|
- type: precision_at_5 |
|
value: 0.04067 |
|
- type: recall_at_1 |
|
value: 0.09057 |
|
- type: recall_at_10 |
|
value: 0.21319 |
|
- type: recall_at_100 |
|
value: 0.38999 |
|
- type: recall_at_1000 |
|
value: 0.65374 |
|
- type: recall_at_3 |
|
value: 0.14331 |
|
- type: recall_at_5 |
|
value: 0.17917 |
|
--- |
|
|
|
# SGPT-125M-weightedmean-nli-bitfit |
|
|
|
## Usage |
|
|
|
For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt |
|
|
|
## Evaluation Results |
|
|
|
For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904 |
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8807 with parameters: |
|
``` |
|
{'batch_size': 64} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: |
|
``` |
|
{'scale': 20.0, 'similarity_fct': 'cos_sim'} |
|
``` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 1, |
|
"evaluation_steps": 880, |
|
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'transformers.optimization.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 0.0002 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 881, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: GPTNeoModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
```bibtex |
|
@article{muennighoff2022sgpt, |
|
title={SGPT: GPT Sentence Embeddings for Semantic Search}, |
|
author={Muennighoff, Niklas}, |
|
journal={arXiv preprint arXiv:2202.08904}, |
|
year={2022} |
|
} |
|
``` |
|
|