File size: 28,497 Bytes
613db61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_ndcg@100
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10000
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Cashless transactions such as online transactions, credit card
    transactions, and mobile wallet are becoming more popular in financial transactions
    nowadays. With increased number of such cashless transaction, number of fraudulent
    transactions are also increasing. Fraud can be distinguished by analyzing spending
    behavior of customers (users) from previous transaction data. If any deviation
    is noticed in spending behavior from available patterns, it is possibly of fraudulent
    transaction. To detect fraud behavior, bank and credit card companies are using
    various methods of data mining such as decision tree, rule based mining, neural
    network, fuzzy clustering approach, hidden markov model or hybrid approach of
    these methods. Any of these methods is applied to find out normal usage pattern
    of customers (users) based on their past activities. The objective of this paper
    is to provide comparative study of different techniques to detect fraud.
  sentences:
  - how fraud detection is done
  - deep cnn image analysis definition
  - what are intermediate representations
- source_sentence: 'We present a novel convolutional neural network (CNN) based approach
    for one-class classification. The idea is to use a zero centered Gaussian noise
    in the latent space as the pseudo-negative class and train the network using the
    cross-entropy loss to learn a good representation as well as the decision boundary
    for the given class. A key feature of the proposed approach is that any pre-trained
    CNN can be used as the base network for one-class classification. The proposed
    one-class CNN is evaluated on the UMDAA-02 Face, Abnormality-1001, and FounderType-200
    datasets. These datasets are related to a variety of one-class application problems
    such as user authentication, abnormality detection, and novelty detection. Extensive
    experiments demonstrate that the proposed method achieves significant improvements
    over the recent state-of-the-art methods. The source code is available at: github.com/otkupjnoz/oc-cnn.'
  sentences:
  - what is one class convolutional neural networks
  - what is the use for sic carbide
  - what is bayesopt
- source_sentence: 'While the field of educational data mining (EDM) has generated
    many innovations for improving educational software and student learning, the
    mining of student data has recently come under a great deal of scrutiny. Many
    stakeholder groups, including public officials, media outlets, and parents, have
    voiced concern over the privacy of student data and their efforts have garnered
    national attention. The momentum behind and scrutiny of student privacy has made
    it increasingly difficult for EDM applications to transition from academia to
    industry. Based on experience as academic researchers transitioning into industry,
    we present three primary areas of concern related to student privacy in practice:
    policy, corporate social responsibility, and public opinion. Our discussion will
    describe the key challenges faced within these categories, strategies for overcoming
    them, and ways in which the academic EDM community can support the adoption of
    innovative technologies in large-scale production.'
  sentences:
  - what is the purpose of artificial intelligence firewalls
  - genetic crossover operator
  - why is privacy important for students
- source_sentence: Autonomous vehicle research has been prevalent for well over a
    decade but only recently has there been a small amount of research conducted on
    the human interaction that occurs in autonomous vehicles. Although functional
    software and sensor technology is essential for safe operation, which has been
    the main focus of autonomous vehicle research, handling all elements of human
    interaction is also a very salient aspect of their success. This paper will provide
    an overview of the importance of human vehicle interaction in autonomous vehicles,
    while considering relevant related factors that are likely to impact adoption.
    Particular attention will be given to prior research conducted on germane areas
    relating to control in the automobile, in addition to the different elements that
    are expected to affect the likelihood of success for these vehicles initially
    developed for human operation. This paper will also include a discussion of the
    limited research conducted to consider interactions with humans and the current
    state of published functioning software and sensor technology that exists.
  sentences:
  - when are human interaction in autonomous vehicles
  - what is the purpose of evaluator guidelines
  - definition of collaborative filtering
- source_sentence: J. Appl. Phys. 111, 07E328 (2012) A single-solenoid pulsed-magnet
    system for single-crystal scattering studies Rev. Sci. Instrum. 83, 035101 (2012)
    Solution to the problem of E-cored coil above a layered half-space using the method
    of truncated region eigenfunction expansion J. Appl. Phys. 111, 07E717 (2012)
    Array of 12 coils to measure the position, alignment, and sensitivity of magnetic
    sensors over temperature J. Appl. Phys. 111, 07E501 (2012) Skin effect suppression
    for Cu/CoZrNb multilayered inductor J. Appl. Phys. 111, 07A501 (2012)
  sentences:
  - which inductor can be used for multilayer scattering studies?
  - which patch antennas use a microstrip line
  - what kind of interaction is in mobile
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.4995
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7685
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8205
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.873
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4995
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2561666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16410000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08730000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4995
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7685
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8205
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.873
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7001286552732331
      name: Cosine Ndcg@10
    - type: cosine_ndcg@100
      value: 0.7182557103824586
      name: Cosine Ndcg@100
    - type: cosine_mrr@10
      value: 0.6433079365079365
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6472568310800184
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-scidocs-dataset-10k-2k-e1")
# Run inference
sentences = [
    'J. Appl. Phys. 111, 07E328 (2012) A single-solenoid pulsed-magnet system for single-crystal scattering studies Rev. Sci. Instrum. 83, 035101 (2012) Solution to the problem of E-cored coil above a layered half-space using the method of truncated region eigenfunction expansion J. Appl. Phys. 111, 07E717 (2012) Array of 12 coils to measure the position, alignment, and sensitivity of magnetic sensors over temperature J. Appl. Phys. 111, 07E501 (2012) Skin effect suppression for Cu/CoZrNb multilayered inductor J. Appl. Phys. 111, 07A501 (2012)',
    'which inductor can be used for multilayer scattering studies?',
    'what kind of interaction is in mobile',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4995     |
| cosine_accuracy@3   | 0.7685     |
| cosine_accuracy@5   | 0.8205     |
| cosine_accuracy@10  | 0.873      |
| cosine_precision@1  | 0.4995     |
| cosine_precision@3  | 0.2562     |
| cosine_precision@5  | 0.1641     |
| cosine_precision@10 | 0.0873     |
| cosine_recall@1     | 0.4995     |
| cosine_recall@3     | 0.7685     |
| cosine_recall@5     | 0.8205     |
| cosine_recall@10    | 0.873      |
| cosine_ndcg@10      | 0.7001     |
| cosine_ndcg@100     | 0.7183     |
| cosine_mrr@10       | 0.6433     |
| **cosine_map@100**  | **0.6473** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 10,000 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                           |
  |:--------|:------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                           |
  | details | <ul><li>min: 2 tokens</li><li>mean: 210.86 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.51 tokens</li><li>max: 33 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | anchor                                          |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------|
  | <code>This article introduces a sentiment analysis approach that adopts the way humans read, interpret, and extract sentiment from text. Our motivation builds on the assumption that human interpretation should lead to the most accurate assessment of sentiment in text. We call this automated process Human Reading for Sentiment (HRS). Previous research in sentiment analysis has produced many frameworks that can fit one or more of the HRS aspects; however, none of these methods has addressed them all in one approach. HRS provides a meta-framework for developing new sentiment analysis methods or improving existing ones. The proposed framework provides a theoretical lens for zooming in and evaluating aspects of any sentiment analysis method to identify gaps for improvements towards matching the human reading process. Key steps in HRS include the automation of humans low-level and high-level cognitive text processing. This methodology paves the way towards the integration of psychology with computational linguistics and machine learning to employ models of pragmatics and discourse analysis for sentiment analysis. HRS is tested with two state-of-the-art methods; one is based on feature engineering, and the other is based on deep learning. HRS highlighted the gaps in both methods and showed improvements for both.</code> | <code>definition of sentiment analysis</code>   |
  | <code>Although commonly used in both commercial and experimental information retrieval systems, thesauri have not demonstrated consistent beneets for retrieval performance, and it is diicult to construct a thesaurus automatically for large text databases. In this paper, an approach, called PhraseFinder, is proposed to construct collection-dependent association thesauri automatically using large full-text document collections. The association thesaurus can be accessed through natural language queries in INQUERY, an information retrieval system based on the probabilistic inference network. Experiments are conducted in IN-QUERY to evaluate diierent types of association thesauri, and thesauri constructed for a variety of collections.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <code>what is association thesaurus</code>      |
  | <code>The choice of transfer functions may strongly influence complexity and performance of neural networks. Although sigmoidal transfer functions are the most common there is no a priori reason why models based on such functions should always provide optimal decision borders. A large number of alternative transfer functions has been described in the literature. A taxonomy of activation and output functions is proposed, and advantages of various non-local and local neural transfer functions are discussed. Several less-known types of transfer functions and new combinations of activation/output functions are described. Universal transfer functions, parametrized to change from localized to delocalized type, are of greatest interest. Other types of neural transfer functions discussed here include functions with activations based on nonEuclidean distance measures, bicentral functions, formed from products or linear combinations of pairs of sigmoids, and extensions of such functions making rotations of localized decision borders in highly dimensional spaces practical. Nonlinear input preprocessing techniques are briefly described, offering an alternative way to change the shapes of decision borders.</code>                                                                                                                   | <code>types of neural transfer functions</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768
      ],
      "matryoshka_weights": [
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step    | Training Loss | dim_768_cosine_map@100 |
|:-------:|:-------:|:-------------:|:----------------------:|
| 0.0319  | 10      | 0.6581        | -                      |
| 0.0639  | 20      | 0.4842        | -                      |
| 0.0958  | 30      | 0.3555        | -                      |
| 0.1278  | 40      | 0.2398        | -                      |
| 0.1597  | 50      | 0.2917        | -                      |
| 0.1917  | 60      | 0.2286        | -                      |
| 0.2236  | 70      | 0.1903        | -                      |
| 0.2556  | 80      | 0.1832        | -                      |
| 0.2875  | 90      | 0.2899        | -                      |
| 0.3195  | 100     | 0.1744        | -                      |
| 0.3514  | 110     | 0.2148        | -                      |
| 0.3834  | 120     | 0.1379        | -                      |
| 0.4153  | 130     | 0.2123        | -                      |
| 0.4473  | 140     | 0.2445        | -                      |
| 0.4792  | 150     | 0.1481        | -                      |
| 0.5112  | 160     | 0.1392        | -                      |
| 0.5431  | 170     | 0.2218        | -                      |
| 0.5751  | 180     | 0.2225        | -                      |
| 0.6070  | 190     | 0.2874        | -                      |
| 0.6390  | 200     | 0.1927        | -                      |
| 0.6709  | 210     | 0.2469        | -                      |
| 0.7029  | 220     | 0.1915        | -                      |
| 0.7348  | 230     | 0.1711        | -                      |
| 0.7668  | 240     | 0.1982        | -                      |
| 0.7987  | 250     | 0.1783        | -                      |
| 0.8307  | 260     | 0.2016        | -                      |
| 0.8626  | 270     | 0.211         | -                      |
| 0.8946  | 280     | 0.1962        | -                      |
| 0.9265  | 290     | 0.1867        | -                      |
| 0.9585  | 300     | 0.195         | -                      |
| 0.9904  | 310     | 0.2161        | -                      |
| **1.0** | **313** | **-**         | **0.6473**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->