MugheesAwan11 commited on
Commit
4b66b8c
1 Parent(s): 2b883c2

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,896 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: sentence-transformers
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - generated_from_trainer
11
+ - dataset_size:900
12
+ - loss:MatryoshkaLoss
13
+ - loss:MultipleNegativesRankingLoss
14
+ base_model: BAAI/bge-base-en-v1.5
15
+ datasets: []
16
+ metrics:
17
+ - cosine_accuracy@1
18
+ - cosine_accuracy@3
19
+ - cosine_accuracy@5
20
+ - cosine_accuracy@10
21
+ - cosine_precision@1
22
+ - cosine_precision@3
23
+ - cosine_precision@5
24
+ - cosine_precision@10
25
+ - cosine_recall@1
26
+ - cosine_recall@3
27
+ - cosine_recall@5
28
+ - cosine_recall@10
29
+ - cosine_ndcg@10
30
+ - cosine_mrr@10
31
+ - cosine_map@100
32
+ widget:
33
+ - source_sentence: '["Vendor Risk Assessment\n\nView\n\nBreach Management\n\nView\n\nPrivacy
34
+ Policy Management\n\nView\n\nPrivacy Center\n\nView\n\nLearn more\n\nSecurity\n\nIdentify
35
+ data risk and enable protection & control\n\nData Security Posture Management\n\nView\n\nData
36
+ Access Intelligence & Governance\n\nView\n\nData Risk Management\n\nView\n\nData
37
+ Breach Analysis\n\nView\n\nLearn more\n\nGovernance\n\nOptimize Data Governance
38
+ with granular insights into your data\n\nData Catalog\n\nView\n\nData Lineage\n\nView\n\nData
39
+ Quality\n\nView\n\nData Controls Orchestrator\n\nView\n\nSolutions\n\nTechnologies\n\nCovering
40
+ you everywhere with 1000+ integrations across data systems.\n\nSnowflake\n\nView\n\nAWS\n\nView\n\nMicrosoft
41
+ 365\n\nView\n\nSalesforce\n\nView\n\nWorkday\n\nView\n\nGCP\n\nView\n\nAzure\n\nView\n\nOracle\n\nView\n\nLearn
42
+ more\n\nRegulations\n\nAutomate compliance with global privacy regulations.\n\nUS
43
+ California CCPA\n\nView\n\nUS California CPRA\n\nView\n\nEuropean Union GDPR\n\nView\n\nThailand’s
44
+ PDPA\n\nView\n\nChina PIPL\n\nView\n\nCanada PIPEDA\n\nView\n\nBrazil''s LGPD\n\nView\n\n\\+
45
+ More\n\nView\n\nLearn more\n\nRoles\n\nIdentify data risk and enable protection
46
+ & control.\n\nPrivacy\n\nView\n\nSecurity\n\nView\n\nGovernance\n\nView\n\nMarketing\n\nView\n\nResources\n\nBlog\n\nRead
47
+ through our articles written by industry experts\n\nCollateral\n\nProduct brochures,
48
+ white papers, infographics, analyst reports and more.\n\nKnowledge Center\n\nLearn
49
+ about the data privacy, security and governance landscape.\n\nSecuriti Education\n\nCourses
50
+ and Certifications for data privacy, security and governance professionals.\n\nCompany\n\nAbout
51
+ Us\n\nLearn all about Securiti, our mission and history\n\nPartner Program\n\nJoin
52
+ our Partner Program\n\nContact Us\n\nContact us to learn more or schedule a demo\n\nNews
53
+ Coverage\n\nRead about Securiti in the news\n\nPress Releases\n\nFind our latest
54
+ press releases\n\nCareers\n\nJoin the"]'
55
+ sentences:
56
+ - What is the purpose of tracking changes and transformations of data throughout
57
+ its lifecycle?
58
+ - What is the role of ePD in the European privacy regime and its relation to GDPR?
59
+ - How can data governance be optimized using granular insights?
60
+ - source_sentence: '[''Learn more\n\nAsset and Data Discovery\n\nDiscover dark and
61
+ native data assets\n\nLearn more\n\nData Access Intelligence & Governance\n\nIdentify
62
+ which users have access to sensitive data and prevent unauthorized access\n\nLearn
63
+ more\n\nData Privacy Automation\n\nPrivacyCenter.Cloud | Data Mapping | DSR Automation
64
+ | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice\n\nLearn
65
+ more\n\nSensitive Data Intelligence\n\nDiscover & Classify Structured and Unstructured
66
+ Data | People Data Graph\n\nLearn more\n\nData Flow Intelligence & Governance\n\nPrevent
67
+ sensitive data sprawl through real-time streaming platforms\n\nLearn more\n\nData
68
+ Consent Automation\n\nFirst Party Consent | Third Party & Cookie Consent\n\nLearn
69
+ more\n\nData Security Posture Management\n\nSecure sensitive data in hybrid multicloud
70
+ and SaaS environments\n\nLearn more\n\nData Breach Impact Analysis & Response\n\nAnalyze
71
+ impact of a data breach and coordinate response per global regulatory obligations\n\nLearn
72
+ more\n\nData Catalog\n\nAutomatically catalog datasets and enable users to find,
73
+ understand, trust and access data\n\nLearn more\n\nData Lineage\n\nTrack changes
74
+ and transformations of data throughout its lifecycle\n\nData Controls Orchestrator\n\nView\n\nData
75
+ Command Center\n\nView\n\nSensitive Data Intelligence\n\nView\n\nAsset Discovery\n\nData
76
+ Discovery & Classification\n\nSensitive Data Catalog\n\nPeople Data Graph\n\nLearn
77
+ more\n\nPrivacy\n\nAutomate compliance with global privacy regulations\n\nData
78
+ Mapping Automation\n\nView\n\nData Subject Request Automation\n\nView\n\nPeople
79
+ Data Graph\n\nView\n\nAssessment Automation\n\nView\n\nCookie Consent\n\nView\n\nUniversal
80
+ Consent\n\nView\n\nVendor Risk Assessment\n\nView\n\nBreach Management\n\nView\n\nPrivacy
81
+ Policy Management\n\nView\n\nPrivacy Center\n\nView\n\nLearn more\n\nSecurity\n\nIdentify
82
+ data risk and enable protection & control\n\nData Security Posture Management\n\nView\n\nData
83
+ Access Intelligence & Governance\n\nView\n\nData Risk Management\n\nView\n\nData
84
+ Breach Analysis\n\nView\n\nLearn more\n\nGovernance\n\nOptimize Data Governance
85
+ with granular insights into your data\n\nData Catalog\n\nView\n\nData Lineage\n\nView\n\nData
86
+ Quality\n\nView\n\nData Controls Orchestrator\n\n'', ''\n\nView\n\nLearn more\n\nAsset
87
+ and Data Discovery\n\nDiscover dark and native data assets\n\nLearn more\n\nData
88
+ Access Intelligence & Governance\n\nIdentify which users have access to sensitive
89
+ data and prevent unauthorized access\n\nLearn more\n\nData Privacy Automation\n\nPrivacyCenter.Cloud
90
+ | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment |
91
+ Breach Management | Privacy Notice\n\nLearn more\n\nSensitive Data Intelligence\n\nDiscover
92
+ & Classify Structured and Unstructured Data | People Data Graph\n\nLearn more\n\nData
93
+ Flow Intelligence & Governance\n\nPrevent sensitive data sprawl through real-time
94
+ streaming platforms\n\nLearn more\n\nData Consent Automation\n\nFirst Party Consent
95
+ | Third Party & Cookie Consent\n\nLearn more\n\nData Security Posture Management\n\nSecure
96
+ sensitive data in hybrid multicloud and SaaS environments\n\nLearn more\n\nData
97
+ Breach Impact Analysis & Response\n\nAnalyze impact of a data breach and coordinate
98
+ response per global regulatory obligations\n\nLearn more\n\nData Catalog\n\nAutomatically
99
+ catalog datasets and enable users to find, understand, trust and access data\n\nLearn
100
+ more\n\nData Lineage\n\nTrack changes and transformations of data throughout its
101
+ lifecycle\n\nData Controls Orchestrator\n\nView\n\nData Command Center\n\nView\n\nSensitive
102
+ Data Intelligence\n\nView\n\nAsset Discovery\n\nData Discovery & Classification\n\nSensitive
103
+ Data Catalog\n\nPeople Data Graph\n\nLearn more\n\nPrivacy\n\nAutomate compliance
104
+ with global privacy regulations\n\nData Mapping Automation\n\nView\n\nData Subject
105
+ Request Automation\n\nView\n\nPeople Data Graph\n\nView\n\nAssessment Automation\n\nView\n\nCookie
106
+ Consent\n\nView\n\nUniversal Consent\n\nView\n\nVendor Risk Assessment\n\nView\n\nBreach
107
+ Management\n\nView\n\nPrivacy Policy Management\n\nView\n\nPrivacy Center\n\nView\n\nLearn
108
+ more\n\nSecurity\n\nIdentify data risk and enable protection & control\n\nData
109
+ Security Posture Management\n\nView\n\nData Access Intelligence & Governance\n\nView\n\nData
110
+ Risk Management\n\nView\n\nData Breach Analysis\n\nView\n\nLearn more\n\nGovernance\n\nOptimize
111
+ Data Governance with granular insights into your data\n\nData Catalog\n\nView\n\nData
112
+ Lineage\n\nView\n\nData Quality\n\nView\n\nData Controls'']'
113
+ sentences:
114
+ - What is the purpose of Asset and Data Discovery in data governance and security?
115
+ - Which EU member states have strict cyber laws?
116
+ - What is the obligation for organizations to provide Data Protection Impact Assessments
117
+ (DPIAs) under the LGPD?
118
+ - source_sentence: '['' which the data is processed.\n\n**Right to Access:** Data
119
+ subjects have the right to obtain confirmation whether or not the controller holds
120
+ personal data about them, access their personal data, and obtain descriptions
121
+ of data recipients.\n\n**Right to Rectification** : Under the right to rectification,
122
+ data subjects can request the correction of their data.\n\n**Right to Erasure:**
123
+ Data subjects have the right to request the erasure and destruction of the data
124
+ that is no longer needed by the organization.\n\n**Right to Object:** The data
125
+ subject has the right to prevent the data controller from processing personal
126
+ data if such processing causes or is likely to cause unwarranted damage or distress
127
+ to the data subject.\n\n**Right not to be Subjected to Automated Decision-Making**
128
+ : The data subject has the right to not be subject to automated decision-making
129
+ that significantly affects the individual.\n\n## Facts related to Ghana’s Data
130
+ Protection Act 2012\n\n1\n\nWhile processing personal data, organizations must
131
+ comply with eight privacy principles: lawfulness of processing, data quality,
132
+ security measures, accountability, purpose specification, purpose limitation,
133
+ openness, and data subject participation.\n\n2\n\nIn the event of a security breach,
134
+ the data controller shall take measures to prevent the breach and notify the Commission
135
+ and the data subject about the breach as soon as reasonably practicable after
136
+ the discovery of the breach.\n\n3\n\nThe DPA specifies lawful grounds for data
137
+ processing, including data subject’s consent, the performance of a contract, the
138
+ interest of data subject and public interest, lawful obligations, and the legitimate
139
+ interest of the data controller.\n\n4\n\nThe DPA requires data controllers to
140
+ register with the Data Protection Commission (DPC).\n\n5\n\nThe DPA provides varying
141
+ fines and terms of imprisonment according to the severity and sensitivity of the
142
+ violation, such as any person who sells personal data may get fined up to 2500
143
+ penalty units or up to five years imprisonment or both.\n\n### Forrester Names
144
+ Securiti a Leader in the Privacy Management Wave Q4, 2021\n\nRead the Report\n\n###
145
+ Securiti named a Leader in the IDC MarketScape for Data Privacy Compliance Software\n\nRead
146
+ the Report\n\nAt Securiti, our mission is to enable enterprises to safely harness
147
+ the incredible power of data and the cloud by controlling the complex security,
148
+ privacy and compliance risks.\n\nCopyright (C) 2023 Securiti\n\nSitem'']'
149
+ sentences:
150
+ - What information is required for data subjects regarding data transfers under
151
+ the GDPR, including personal data categories, data recipients, retention period,
152
+ and automated decision making?
153
+ - What privacy principles must organizations follow when processing personal data
154
+ under Ghana's Data Protection Act 2012?
155
+ - What is the purpose of Thailand's PDPA?
156
+ - source_sentence: '[" consumer has the right to have his/her personal data stored
157
+ or processed by the data controller be deleted.\n\n## Portability\n\nThe consumer
158
+ has a right to obtain a copy of his/her personal data in a portable, technically
159
+ feasible and readily usable format that allows the consumer to transmit the data
160
+ to another controller without hindrance.\n\n## Opt\n\nout\n\nThe consumer has
161
+ the right to opt out of the processing of the personal data for purposes of targeted
162
+ advertising, the sale of personal data, or profiling in furtherance of decisions
163
+ that produce legal or similarly significant effects concerning the consumer.\n\n**Time
164
+ period to fulfill DSR request:\n\n** All data subject rights’ requests (DSR requests)
165
+ must be fulfilled by the data controller within a 45 day period.\n\n**Extension
166
+ in time period:\n\n** data controllers may seek for an extension of 45 days in
167
+ fulfilling the request depending on the complexity and number of the consumer''s
168
+ requests.\n\n**Denial of DSR request:\n\n** If a DSR request is to be denied,
169
+ the data controller must inform the consumer of the reasons within a 45 days period.\n\n**Appeal
170
+ against refusal:\n\n** Consumers have a right to appeal the decision for refusal
171
+ of grant of the DSR request. The appeal must be decided within 45 days but the
172
+ time period can be further extended by 60 additional days.\n\n**Limitation of
173
+ DSR requests per year:\n\n** Requests for data portability may be made only twice
174
+ in a year.\n\n**Charges:\n\n** DSR requests must be fulfilled free of charge once
175
+ in a year. Any subsequent request within a 12 month period can be charged.\n\n**Authentication:\n\n**
176
+ A data controller is not to respond to a consumer request unless it can authenticate
177
+ the request using reasonably commercial means. A data controller can request additional
178
+ information from the consumer for the purposes of authenticating the request.\n\n##
179
+ Who must comply?\n\nCPA applies to all data controllers who conduct business in
180
+ Colorado or produce or deliver commercial products or services that are intentionally
181
+ targeted to residents of Colorado\n\nif they match any one or both of these conditions:\n\nIf
182
+ they control or process the personal data of 100,000 consumers or more during
183
+ a calendar year; or\n\nIf they derive revenue or receive a discount on the price
184
+ of goods or services from the sale of personal data and process or control the
185
+ personal data of 25,000"]'
186
+ sentences:
187
+ - What is the US California CCPA and how does it relate to data privacy regulations?
188
+ - What does the People Data Graph serve in terms of privacy, security, and governance?
189
+ - What rights does a consumer have regarding the portability of their personal data?
190
+ - source_sentence: '["PR and Federal Data Protection Act within Germany;\n\nTo promote
191
+ awareness within the public related to the risks, rules, safeguards, and rights
192
+ concerning the processing of personal data;\n\nTo handle all complaints raised
193
+ by data subjects related to data processing in addition to carrying out investigations
194
+ to find out if any data handler has breached any provisions of the Act;\n\n##
195
+ Penalties for Non\n\ncompliance\n\nThe GDPR already laid down some stringent penalties
196
+ for companies that would be found in breach of the law''s provisions. More importantly,
197
+ as opposed to other data protection laws such as the CCPA and CPRA, non-compliance
198
+ with the law also meant penalties.\n\nGermany''s Federal Data Protection Act has
199
+ a slightly more lenient take in this regard. Suppose a data handler is found to
200
+ have fraudulently collected data, processed, shared, or sold data without proper
201
+ consent from the data subjects, not responded or responded with delay to a data
202
+ subject request, or failed to inform the data subject of a breach properly. In
203
+ that case, it can be fined up to €50,000.\n\nThis is in addition to the GDPR''s
204
+ €20 million or 4% of the total worldwide annual turnover of the preceding financial
205
+ year, whichever is higher, that any organisation found in breach of the law is
206
+ subject to.\n\nHowever, for this fine to be applied, either the data subject,
207
+ the Federal Commissioner, or the regulatory authority must file an official complaint.\n\n##
208
+ How an Organization Can Operationalize the Law\n\nData handlers processing data
209
+ inside Germany can remain compliant with the country''s data protection law if
210
+ they fulfill the following conditions:\n\nHave a comprehensive privacy policy
211
+ that educates all users of their rights and how to contact the relevant personnel
212
+ within the organisation in case of a query\n\nHire a competent Data Protection
213
+ Officer that understands the GDPR and Federal Data Protection Act thoroughly and
214
+ can lead compliance efforts within your organisation\n\nEnsure all the company''s
215
+ employees and staff are acutely aware of their responsibilities under the law\n\nConduct
216
+ regular data protection impact assessments as well as data mapping exercises to
217
+ ensure maximum efficiency in your compliance efforts\n\nNotify the relevant authorities
218
+ of a data breach as soon as possible\n\n## How can Securiti Help\n\nData privacy
219
+ and compliance have become incredibly vital in earning users'' trust globally.
220
+ Most users now expect most businesses to take all the relevant measures to ensure
221
+ the data they collect is properly stored, protected, and maintained. Data protection
222
+ laws have made such efforts legally mandatory"]'
223
+ sentences:
224
+ - How does Data Access Intelligence & Governance prevent unauthorized access to
225
+ sensitive data?
226
+ - What is required for an official complaint to be filed under Germany's Federal
227
+ Data Protection Act?
228
+ - Why is tracking data lineage important for data management and security?
229
+ pipeline_tag: sentence-similarity
230
+ model-index:
231
+ - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
232
+ results:
233
+ - task:
234
+ type: information-retrieval
235
+ name: Information Retrieval
236
+ dataset:
237
+ name: dim 512
238
+ type: dim_512
239
+ metrics:
240
+ - type: cosine_accuracy@1
241
+ value: 0.07
242
+ name: Cosine Accuracy@1
243
+ - type: cosine_accuracy@3
244
+ value: 0.26
245
+ name: Cosine Accuracy@3
246
+ - type: cosine_accuracy@5
247
+ value: 0.44
248
+ name: Cosine Accuracy@5
249
+ - type: cosine_accuracy@10
250
+ value: 0.63
251
+ name: Cosine Accuracy@10
252
+ - type: cosine_precision@1
253
+ value: 0.07
254
+ name: Cosine Precision@1
255
+ - type: cosine_precision@3
256
+ value: 0.08666666666666668
257
+ name: Cosine Precision@3
258
+ - type: cosine_precision@5
259
+ value: 0.088
260
+ name: Cosine Precision@5
261
+ - type: cosine_precision@10
262
+ value: 0.06299999999999999
263
+ name: Cosine Precision@10
264
+ - type: cosine_recall@1
265
+ value: 0.07
266
+ name: Cosine Recall@1
267
+ - type: cosine_recall@3
268
+ value: 0.26
269
+ name: Cosine Recall@3
270
+ - type: cosine_recall@5
271
+ value: 0.44
272
+ name: Cosine Recall@5
273
+ - type: cosine_recall@10
274
+ value: 0.63
275
+ name: Cosine Recall@10
276
+ - type: cosine_ndcg@10
277
+ value: 0.3150525932481703
278
+ name: Cosine Ndcg@10
279
+ - type: cosine_mrr@10
280
+ value: 0.2180119047619047
281
+ name: Cosine Mrr@10
282
+ - type: cosine_map@100
283
+ value: 0.23183767291183585
284
+ name: Cosine Map@100
285
+ - task:
286
+ type: information-retrieval
287
+ name: Information Retrieval
288
+ dataset:
289
+ name: dim 256
290
+ type: dim_256
291
+ metrics:
292
+ - type: cosine_accuracy@1
293
+ value: 0.06
294
+ name: Cosine Accuracy@1
295
+ - type: cosine_accuracy@3
296
+ value: 0.24
297
+ name: Cosine Accuracy@3
298
+ - type: cosine_accuracy@5
299
+ value: 0.44
300
+ name: Cosine Accuracy@5
301
+ - type: cosine_accuracy@10
302
+ value: 0.6
303
+ name: Cosine Accuracy@10
304
+ - type: cosine_precision@1
305
+ value: 0.06
306
+ name: Cosine Precision@1
307
+ - type: cosine_precision@3
308
+ value: 0.07999999999999999
309
+ name: Cosine Precision@3
310
+ - type: cosine_precision@5
311
+ value: 0.088
312
+ name: Cosine Precision@5
313
+ - type: cosine_precision@10
314
+ value: 0.059999999999999984
315
+ name: Cosine Precision@10
316
+ - type: cosine_recall@1
317
+ value: 0.06
318
+ name: Cosine Recall@1
319
+ - type: cosine_recall@3
320
+ value: 0.24
321
+ name: Cosine Recall@3
322
+ - type: cosine_recall@5
323
+ value: 0.44
324
+ name: Cosine Recall@5
325
+ - type: cosine_recall@10
326
+ value: 0.6
327
+ name: Cosine Recall@10
328
+ - type: cosine_ndcg@10
329
+ value: 0.2944478644544164
330
+ name: Cosine Ndcg@10
331
+ - type: cosine_mrr@10
332
+ value: 0.19998809523809516
333
+ name: Cosine Mrr@10
334
+ - type: cosine_map@100
335
+ value: 0.21493741340512212
336
+ name: Cosine Map@100
337
+ - task:
338
+ type: information-retrieval
339
+ name: Information Retrieval
340
+ dataset:
341
+ name: dim 128
342
+ type: dim_128
343
+ metrics:
344
+ - type: cosine_accuracy@1
345
+ value: 0.07
346
+ name: Cosine Accuracy@1
347
+ - type: cosine_accuracy@3
348
+ value: 0.21
349
+ name: Cosine Accuracy@3
350
+ - type: cosine_accuracy@5
351
+ value: 0.4
352
+ name: Cosine Accuracy@5
353
+ - type: cosine_accuracy@10
354
+ value: 0.6
355
+ name: Cosine Accuracy@10
356
+ - type: cosine_precision@1
357
+ value: 0.07
358
+ name: Cosine Precision@1
359
+ - type: cosine_precision@3
360
+ value: 0.06999999999999999
361
+ name: Cosine Precision@3
362
+ - type: cosine_precision@5
363
+ value: 0.08
364
+ name: Cosine Precision@5
365
+ - type: cosine_precision@10
366
+ value: 0.059999999999999984
367
+ name: Cosine Precision@10
368
+ - type: cosine_recall@1
369
+ value: 0.07
370
+ name: Cosine Recall@1
371
+ - type: cosine_recall@3
372
+ value: 0.21
373
+ name: Cosine Recall@3
374
+ - type: cosine_recall@5
375
+ value: 0.4
376
+ name: Cosine Recall@5
377
+ - type: cosine_recall@10
378
+ value: 0.6
379
+ name: Cosine Recall@10
380
+ - type: cosine_ndcg@10
381
+ value: 0.29018137407094874
382
+ name: Cosine Ndcg@10
383
+ - type: cosine_mrr@10
384
+ value: 0.19626984126984123
385
+ name: Cosine Mrr@10
386
+ - type: cosine_map@100
387
+ value: 0.21169474427113727
388
+ name: Cosine Map@100
389
+ - task:
390
+ type: information-retrieval
391
+ name: Information Retrieval
392
+ dataset:
393
+ name: dim 64
394
+ type: dim_64
395
+ metrics:
396
+ - type: cosine_accuracy@1
397
+ value: 0.07
398
+ name: Cosine Accuracy@1
399
+ - type: cosine_accuracy@3
400
+ value: 0.17
401
+ name: Cosine Accuracy@3
402
+ - type: cosine_accuracy@5
403
+ value: 0.32
404
+ name: Cosine Accuracy@5
405
+ - type: cosine_accuracy@10
406
+ value: 0.53
407
+ name: Cosine Accuracy@10
408
+ - type: cosine_precision@1
409
+ value: 0.07
410
+ name: Cosine Precision@1
411
+ - type: cosine_precision@3
412
+ value: 0.056666666666666664
413
+ name: Cosine Precision@3
414
+ - type: cosine_precision@5
415
+ value: 0.064
416
+ name: Cosine Precision@5
417
+ - type: cosine_precision@10
418
+ value: 0.05299999999999999
419
+ name: Cosine Precision@10
420
+ - type: cosine_recall@1
421
+ value: 0.07
422
+ name: Cosine Recall@1
423
+ - type: cosine_recall@3
424
+ value: 0.17
425
+ name: Cosine Recall@3
426
+ - type: cosine_recall@5
427
+ value: 0.32
428
+ name: Cosine Recall@5
429
+ - type: cosine_recall@10
430
+ value: 0.53
431
+ name: Cosine Recall@10
432
+ - type: cosine_ndcg@10
433
+ value: 0.2594266732084936
434
+ name: Cosine Ndcg@10
435
+ - type: cosine_mrr@10
436
+ value: 0.17759523809523803
437
+ name: Cosine Mrr@10
438
+ - type: cosine_map@100
439
+ value: 0.194555422694347
440
+ name: Cosine Map@100
441
+ ---
442
+
443
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
444
+
445
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
446
+
447
+ ## Model Details
448
+
449
+ ### Model Description
450
+ - **Model Type:** Sentence Transformer
451
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
452
+ - **Maximum Sequence Length:** 512 tokens
453
+ - **Output Dimensionality:** 768 tokens
454
+ - **Similarity Function:** Cosine Similarity
455
+ <!-- - **Training Dataset:** Unknown -->
456
+ - **Language:** en
457
+ - **License:** apache-2.0
458
+
459
+ ### Model Sources
460
+
461
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
462
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
463
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
464
+
465
+ ### Full Model Architecture
466
+
467
+ ```
468
+ SentenceTransformer(
469
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
470
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
471
+ (2): Normalize()
472
+ )
473
+ ```
474
+
475
+ ## Usage
476
+
477
+ ### Direct Usage (Sentence Transformers)
478
+
479
+ First install the Sentence Transformers library:
480
+
481
+ ```bash
482
+ pip install -U sentence-transformers
483
+ ```
484
+
485
+ Then you can load this model and run inference.
486
+ ```python
487
+ from sentence_transformers import SentenceTransformer
488
+
489
+ # Download from the 🤗 Hub
490
+ model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v8")
491
+ # Run inference
492
+ sentences = [
493
+ '["PR and Federal Data Protection Act within Germany;\\n\\nTo promote awareness within the public related to the risks, rules, safeguards, and rights concerning the processing of personal data;\\n\\nTo handle all complaints raised by data subjects related to data processing in addition to carrying out investigations to find out if any data handler has breached any provisions of the Act;\\n\\n## Penalties for Non\\n\\ncompliance\\n\\nThe GDPR already laid down some stringent penalties for companies that would be found in breach of the law\'s provisions. More importantly, as opposed to other data protection laws such as the CCPA and CPRA, non-compliance with the law also meant penalties.\\n\\nGermany\'s Federal Data Protection Act has a slightly more lenient take in this regard. Suppose a data handler is found to have fraudulently collected data, processed, shared, or sold data without proper consent from the data subjects, not responded or responded with delay to a data subject request, or failed to inform the data subject of a breach properly. In that case, it can be fined up to €50,000.\\n\\nThis is in addition to the GDPR\'s €20 million or 4% of the total worldwide annual turnover of the preceding financial year, whichever is higher, that any organisation found in breach of the law is subject to.\\n\\nHowever, for this fine to be applied, either the data subject, the Federal Commissioner, or the regulatory authority must file an official complaint.\\n\\n## How an Organization Can Operationalize the Law\\n\\nData handlers processing data inside Germany can remain compliant with the country\'s data protection law if they fulfill the following conditions:\\n\\nHave a comprehensive privacy policy that educates all users of their rights and how to contact the relevant personnel within the organisation in case of a query\\n\\nHire a competent Data Protection Officer that understands the GDPR and Federal Data Protection Act thoroughly and can lead compliance efforts within your organisation\\n\\nEnsure all the company\'s employees and staff are acutely aware of their responsibilities under the law\\n\\nConduct regular data protection impact assessments as well as data mapping exercises to ensure maximum efficiency in your compliance efforts\\n\\nNotify the relevant authorities of a data breach as soon as possible\\n\\n## How can Securiti Help\\n\\nData privacy and compliance have become incredibly vital in earning users\' trust globally. Most users now expect most businesses to take all the relevant measures to ensure the data they collect is properly stored, protected, and maintained. Data protection laws have made such efforts legally mandatory"]',
494
+ "What is required for an official complaint to be filed under Germany's Federal Data Protection Act?",
495
+ 'Why is tracking data lineage important for data management and security?',
496
+ ]
497
+ embeddings = model.encode(sentences)
498
+ print(embeddings.shape)
499
+ # [3, 768]
500
+
501
+ # Get the similarity scores for the embeddings
502
+ similarities = model.similarity(embeddings, embeddings)
503
+ print(similarities.shape)
504
+ # [3, 3]
505
+ ```
506
+
507
+ <!--
508
+ ### Direct Usage (Transformers)
509
+
510
+ <details><summary>Click to see the direct usage in Transformers</summary>
511
+
512
+ </details>
513
+ -->
514
+
515
+ <!--
516
+ ### Downstream Usage (Sentence Transformers)
517
+
518
+ You can finetune this model on your own dataset.
519
+
520
+ <details><summary>Click to expand</summary>
521
+
522
+ </details>
523
+ -->
524
+
525
+ <!--
526
+ ### Out-of-Scope Use
527
+
528
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
529
+ -->
530
+
531
+ ## Evaluation
532
+
533
+ ### Metrics
534
+
535
+ #### Information Retrieval
536
+ * Dataset: `dim_512`
537
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
538
+
539
+ | Metric | Value |
540
+ |:--------------------|:-----------|
541
+ | cosine_accuracy@1 | 0.07 |
542
+ | cosine_accuracy@3 | 0.26 |
543
+ | cosine_accuracy@5 | 0.44 |
544
+ | cosine_accuracy@10 | 0.63 |
545
+ | cosine_precision@1 | 0.07 |
546
+ | cosine_precision@3 | 0.0867 |
547
+ | cosine_precision@5 | 0.088 |
548
+ | cosine_precision@10 | 0.063 |
549
+ | cosine_recall@1 | 0.07 |
550
+ | cosine_recall@3 | 0.26 |
551
+ | cosine_recall@5 | 0.44 |
552
+ | cosine_recall@10 | 0.63 |
553
+ | cosine_ndcg@10 | 0.3151 |
554
+ | cosine_mrr@10 | 0.218 |
555
+ | **cosine_map@100** | **0.2318** |
556
+
557
+ #### Information Retrieval
558
+ * Dataset: `dim_256`
559
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
560
+
561
+ | Metric | Value |
562
+ |:--------------------|:-----------|
563
+ | cosine_accuracy@1 | 0.06 |
564
+ | cosine_accuracy@3 | 0.24 |
565
+ | cosine_accuracy@5 | 0.44 |
566
+ | cosine_accuracy@10 | 0.6 |
567
+ | cosine_precision@1 | 0.06 |
568
+ | cosine_precision@3 | 0.08 |
569
+ | cosine_precision@5 | 0.088 |
570
+ | cosine_precision@10 | 0.06 |
571
+ | cosine_recall@1 | 0.06 |
572
+ | cosine_recall@3 | 0.24 |
573
+ | cosine_recall@5 | 0.44 |
574
+ | cosine_recall@10 | 0.6 |
575
+ | cosine_ndcg@10 | 0.2944 |
576
+ | cosine_mrr@10 | 0.2 |
577
+ | **cosine_map@100** | **0.2149** |
578
+
579
+ #### Information Retrieval
580
+ * Dataset: `dim_128`
581
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
582
+
583
+ | Metric | Value |
584
+ |:--------------------|:-----------|
585
+ | cosine_accuracy@1 | 0.07 |
586
+ | cosine_accuracy@3 | 0.21 |
587
+ | cosine_accuracy@5 | 0.4 |
588
+ | cosine_accuracy@10 | 0.6 |
589
+ | cosine_precision@1 | 0.07 |
590
+ | cosine_precision@3 | 0.07 |
591
+ | cosine_precision@5 | 0.08 |
592
+ | cosine_precision@10 | 0.06 |
593
+ | cosine_recall@1 | 0.07 |
594
+ | cosine_recall@3 | 0.21 |
595
+ | cosine_recall@5 | 0.4 |
596
+ | cosine_recall@10 | 0.6 |
597
+ | cosine_ndcg@10 | 0.2902 |
598
+ | cosine_mrr@10 | 0.1963 |
599
+ | **cosine_map@100** | **0.2117** |
600
+
601
+ #### Information Retrieval
602
+ * Dataset: `dim_64`
603
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
604
+
605
+ | Metric | Value |
606
+ |:--------------------|:-----------|
607
+ | cosine_accuracy@1 | 0.07 |
608
+ | cosine_accuracy@3 | 0.17 |
609
+ | cosine_accuracy@5 | 0.32 |
610
+ | cosine_accuracy@10 | 0.53 |
611
+ | cosine_precision@1 | 0.07 |
612
+ | cosine_precision@3 | 0.0567 |
613
+ | cosine_precision@5 | 0.064 |
614
+ | cosine_precision@10 | 0.053 |
615
+ | cosine_recall@1 | 0.07 |
616
+ | cosine_recall@3 | 0.17 |
617
+ | cosine_recall@5 | 0.32 |
618
+ | cosine_recall@10 | 0.53 |
619
+ | cosine_ndcg@10 | 0.2594 |
620
+ | cosine_mrr@10 | 0.1776 |
621
+ | **cosine_map@100** | **0.1946** |
622
+
623
+ <!--
624
+ ## Bias, Risks and Limitations
625
+
626
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
627
+ -->
628
+
629
+ <!--
630
+ ### Recommendations
631
+
632
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
633
+ -->
634
+
635
+ ## Training Details
636
+
637
+ ### Training Dataset
638
+
639
+ #### Unnamed Dataset
640
+
641
+
642
+ * Size: 900 training samples
643
+ * Columns: <code>positive</code> and <code>anchor</code>
644
+ * Approximate statistics based on the first 1000 samples:
645
+ | | positive | anchor |
646
+ |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
647
+ | type | string | string |
648
+ | details | <ul><li>min: 512 tokens</li><li>mean: 512.0 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 22.05 tokens</li><li>max: 82 tokens</li></ul> |
649
+ * Samples:
650
+ | positive | anchor |
651
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------|
652
+ | <code>["orra\n\nThe Andorra personal data protection act came into force on May 17, 2022, by the Andorra Data Protection Authority (ADPA). Learn more about Andorra PDPA\n\n### United Kingdom\n\nThe UK Data Protection Act (DPA) 2018 is the amended version of the Data Protection Act that was passed in 1998. The DPA 2018 implements the GDPR with several additions and restrictions. Learn more about UK DPA\n\n### Botswana\n\nThe Botswana Data Protection came into effect on October 15, 2021 after the issuance of the Data Protection Act (Commencement Date) Order 2021 by the Minister of Presidential Affairs, Governance and Public Administration. Learn more about Botswana DPA\n\n### Zambia\n\nOn March 31, 2021, the Zambian parliament formally passed the Data Protection Act No. 3 of 2021 and the Electronic Communications and Transactions Act No. 4 of 2021. Learn more about Zambia DPA\n\n### Jamaica\n\nOn November 30, 2020, the First Schedule of the Data Protection Act No. 7 of 2020 came into effect following the publication of Supplement No. 160 of Volume CXLIV in the Jamaica Gazette Supplement. Learn more about Jamaica DPA\n\n### Belarus\n\nThe Law on Personal Data Protection of May 7, 2021, No. 99-Z, entered into effect within Belarus on November 15, 2021. Learn more about Belarus DPA\n\n### Russian Federation\n\nThe primary Russian law on data protection, Federal Law No. 152-FZ has been in effect since July 2006. Learn more\n\n### Eswatini\n\nOn March 4, 2022, the Eswatini Communications Commission published the Data Protection Act No. 5 of 2022, simultaneously announcing its immediate enforcement. Learn more\n\n### Oman\n\nThe Royal Decree 6/2022 promulgating the Personal Data Protection Law (PDPL) was passed on February 9, 2022. Learn more\n\n### Sri Lanka\n\nSri Lanka's parliament formally passed the Personal Data Protection Act (PDPA), No. 9 Of 2022, on March 19, 2022. Learn more\n\n### Kuwait\n\nKuwait's DPPR was formally introduced by the CITRA to ensure the Gulf country's data privacy infrastructure. Learn more\n\n### Brunei Darussalam\n\nThe draft Personal Data Protection Order is Brunei’s primary data protection law which came into effect in 2022. Learn more\n\n### India\n\nIndia’"]</code> | <code>What is the name of India's data protection law before May 17, 2022?</code> |
653
+ | <code>[' the affected data subjects and regulatory authority about the breach and whether any of their information has been compromised as a result.\n\n### Data Protection Impact Assessment\n\nThere is no requirement for conducting data protection impact assessment under the PDPA.\n\n### Record of Processing Activities\n\nA data controller must keep and maintain a record of any privacy notice, data subject request, or any other information relating to personal data processed by him in the form and manner that may be determined by the regulatory authority.\n\n### Cross Border Data Transfer Requirements\n\nThe PDPA provides that personal data can be transferred out of Malaysia only when the recipient country is specified as adequate in the Official Gazette. The personal data of data subjects can not be disclosed without the consent of the data subject. The PDPA provides the following exceptions to the cross border data transfer requirements:\n\nWhere the consent of data subject is obtained for transfer; or\n\nWhere the transfer is necessary for the performance of contract between the parties;\n\nThe transfer is for the purpose of any legal proceedings or for the purpose of obtaining legal advice or for establishing, exercising or defending legal rights;\n\nThe data user has taken all reasonable precautions and exercised all due diligence to ensure that the personal data will not in that place be processed in any manner which, if that place is Malaysia, would be a contravention of this PDPA;\n\nThe transfer is necessary in order to protect the vital interests of the data subject; or\n\nThe transfer is necessary as being in the public interest in circumstances as determined by the Minister.\n\n## Data Subject Rights\n\nThe data subjects or the person whose data is being collected has certain rights under the PDPA. The most prominent rights can be categorized under the following:\n\n## Right to withdraw consent\n\nThe PDPA, like some of the other landmark data protection laws such as CPRA and GDPR gives data subjects the right to revoke their consent at any time by way of written notice from having their data collected processed.\n\n## Right to access and rectification\n\nAs per this right, anyone whose data has been collected has the right to request to review their personal data and have it updated. The onus is on the data handlers to respond to such a request as soon as possible while also making it easier for data subjects on how they can request access to their personal data.\n\n## Right to data portability\n\nData subjects have the right to request that their data be stored in a manner where it']</code> | <code>What is the requirement for conducting a data protection impact assessment under the PDPA?</code> |
654
+ | <code>[" more\n\nPrivacy\n\nAutomate compliance with global privacy regulations\n\nData Mapping Automation\n\nView\n\nData Subject Request Automation\n\nView\n\nPeople Data Graph\n\nView\n\nAssessment Automation\n\nView\n\nCookie Consent\n\nView\n\nUniversal Consent\n\nView\n\nVendor Risk Assessment\n\nView\n\nBreach Management\n\nView\n\nPrivacy Policy Management\n\nView\n\nPrivacy Center\n\nView\n\nLearn more\n\nSecurity\n\nIdentify data risk and enable protection & control\n\nData Security Posture Management\n\nView\n\nData Access Intelligence & Governance\n\nView\n\nData Risk Management\n\nView\n\nData Breach Analysis\n\nView\n\nLearn more\n\nGovernance\n\nOptimize Data Governance with granular insights into your data\n\nData Catalog\n\nView\n\nData Lineage\n\nView\n\nData Quality\n\nView\n\nData Controls Orchestrator\n\nView\n\nSolutions\n\nTechnologies\n\nCovering you everywhere with 1000+ integrations across data systems.\n\nSnowflake\n\nView\n\nAWS\n\nView\n\nMicrosoft 365\n\nView\n\nSalesforce\n\nView\n\nWorkday\n\nView\n\nGCP\n\nView\n\nAzure\n\nView\n\nOracle\n\nView\n\nLearn more\n\nRegulations\n\nAutomate compliance with global privacy regulations.\n\nUS California CCPA\n\nView\n\nUS California CPRA\n\nView\n\nEuropean Union GDPR\n\nView\n\nThailand’s PDPA\n\nView\n\nChina PIPL\n\nView\n\nCanada PIPEDA\n\nView\n\nBrazil's LGPD\n\nView\n\n\\+ More\n\nView\n\nLearn more\n\nRoles\n\nIdentify data risk and enable protection & control.\n\nPrivacy\n\nView\n\nSecurity\n\nView\n\nGovernance\n\nView\n\nMarketing\n\nView\n\nResources\n\nBlog\n\nRead through our articles written by industry experts\n\nCollateral\n\nProduct brochures, white papers, infographics, analyst reports and more.\n\nKnowledge Center\n\nLearn about the data privacy, security and governance landscape.\n\nSecuriti Education\n\nCourses and Certifications for data privacy, security and governance professionals.\n\nCompany\n\nAbout Us\n\nLearn all about"]</code> | <code>What is Data Subject Request Automation?</code> |
655
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
656
+ ```json
657
+ {
658
+ "loss": "MultipleNegativesRankingLoss",
659
+ "matryoshka_dims": [
660
+ 512,
661
+ 256,
662
+ 128,
663
+ 64
664
+ ],
665
+ "matryoshka_weights": [
666
+ 1,
667
+ 1,
668
+ 1,
669
+ 1
670
+ ],
671
+ "n_dims_per_step": -1
672
+ }
673
+ ```
674
+
675
+ ### Training Hyperparameters
676
+ #### Non-Default Hyperparameters
677
+
678
+ - `eval_strategy`: epoch
679
+ - `per_device_train_batch_size`: 32
680
+ - `per_device_eval_batch_size`: 16
681
+ - `learning_rate`: 2e-05
682
+ - `num_train_epochs`: 5
683
+ - `lr_scheduler_type`: cosine
684
+ - `warmup_ratio`: 0.1
685
+ - `bf16`: True
686
+ - `tf32`: True
687
+ - `load_best_model_at_end`: True
688
+ - `optim`: adamw_torch_fused
689
+ - `batch_sampler`: no_duplicates
690
+
691
+ #### All Hyperparameters
692
+ <details><summary>Click to expand</summary>
693
+
694
+ - `overwrite_output_dir`: False
695
+ - `do_predict`: False
696
+ - `eval_strategy`: epoch
697
+ - `prediction_loss_only`: True
698
+ - `per_device_train_batch_size`: 32
699
+ - `per_device_eval_batch_size`: 16
700
+ - `per_gpu_train_batch_size`: None
701
+ - `per_gpu_eval_batch_size`: None
702
+ - `gradient_accumulation_steps`: 1
703
+ - `eval_accumulation_steps`: None
704
+ - `learning_rate`: 2e-05
705
+ - `weight_decay`: 0.0
706
+ - `adam_beta1`: 0.9
707
+ - `adam_beta2`: 0.999
708
+ - `adam_epsilon`: 1e-08
709
+ - `max_grad_norm`: 1.0
710
+ - `num_train_epochs`: 5
711
+ - `max_steps`: -1
712
+ - `lr_scheduler_type`: cosine
713
+ - `lr_scheduler_kwargs`: {}
714
+ - `warmup_ratio`: 0.1
715
+ - `warmup_steps`: 0
716
+ - `log_level`: passive
717
+ - `log_level_replica`: warning
718
+ - `log_on_each_node`: True
719
+ - `logging_nan_inf_filter`: True
720
+ - `save_safetensors`: True
721
+ - `save_on_each_node`: False
722
+ - `save_only_model`: False
723
+ - `restore_callback_states_from_checkpoint`: False
724
+ - `no_cuda`: False
725
+ - `use_cpu`: False
726
+ - `use_mps_device`: False
727
+ - `seed`: 42
728
+ - `data_seed`: None
729
+ - `jit_mode_eval`: False
730
+ - `use_ipex`: False
731
+ - `bf16`: True
732
+ - `fp16`: False
733
+ - `fp16_opt_level`: O1
734
+ - `half_precision_backend`: auto
735
+ - `bf16_full_eval`: False
736
+ - `fp16_full_eval`: False
737
+ - `tf32`: True
738
+ - `local_rank`: 0
739
+ - `ddp_backend`: None
740
+ - `tpu_num_cores`: None
741
+ - `tpu_metrics_debug`: False
742
+ - `debug`: []
743
+ - `dataloader_drop_last`: False
744
+ - `dataloader_num_workers`: 0
745
+ - `dataloader_prefetch_factor`: None
746
+ - `past_index`: -1
747
+ - `disable_tqdm`: False
748
+ - `remove_unused_columns`: True
749
+ - `label_names`: None
750
+ - `load_best_model_at_end`: True
751
+ - `ignore_data_skip`: False
752
+ - `fsdp`: []
753
+ - `fsdp_min_num_params`: 0
754
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
755
+ - `fsdp_transformer_layer_cls_to_wrap`: None
756
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
757
+ - `deepspeed`: None
758
+ - `label_smoothing_factor`: 0.0
759
+ - `optim`: adamw_torch_fused
760
+ - `optim_args`: None
761
+ - `adafactor`: False
762
+ - `group_by_length`: False
763
+ - `length_column_name`: length
764
+ - `ddp_find_unused_parameters`: None
765
+ - `ddp_bucket_cap_mb`: None
766
+ - `ddp_broadcast_buffers`: False
767
+ - `dataloader_pin_memory`: True
768
+ - `dataloader_persistent_workers`: False
769
+ - `skip_memory_metrics`: True
770
+ - `use_legacy_prediction_loop`: False
771
+ - `push_to_hub`: False
772
+ - `resume_from_checkpoint`: None
773
+ - `hub_model_id`: None
774
+ - `hub_strategy`: every_save
775
+ - `hub_private_repo`: False
776
+ - `hub_always_push`: False
777
+ - `gradient_checkpointing`: False
778
+ - `gradient_checkpointing_kwargs`: None
779
+ - `include_inputs_for_metrics`: False
780
+ - `eval_do_concat_batches`: True
781
+ - `fp16_backend`: auto
782
+ - `push_to_hub_model_id`: None
783
+ - `push_to_hub_organization`: None
784
+ - `mp_parameters`:
785
+ - `auto_find_batch_size`: False
786
+ - `full_determinism`: False
787
+ - `torchdynamo`: None
788
+ - `ray_scope`: last
789
+ - `ddp_timeout`: 1800
790
+ - `torch_compile`: False
791
+ - `torch_compile_backend`: None
792
+ - `torch_compile_mode`: None
793
+ - `dispatch_batches`: None
794
+ - `split_batches`: None
795
+ - `include_tokens_per_second`: False
796
+ - `include_num_input_tokens_seen`: False
797
+ - `neftune_noise_alpha`: None
798
+ - `optim_target_modules`: None
799
+ - `batch_eval_metrics`: False
800
+ - `batch_sampler`: no_duplicates
801
+ - `multi_dataset_batch_sampler`: proportional
802
+
803
+ </details>
804
+
805
+ ### Training Logs
806
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 |
807
+ |:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
808
+ | 0.3448 | 10 | 7.9428 | - | - | - | - |
809
+ | 0.6897 | 20 | 6.0138 | - | - | - | - |
810
+ | 1.0 | 29 | - | 0.2011 | 0.2099 | 0.2307 | 0.1829 |
811
+ | 1.0345 | 30 | 5.4431 | - | - | - | - |
812
+ | 1.3793 | 40 | 4.4675 | - | - | - | - |
813
+ | 1.7241 | 50 | 3.7435 | - | - | - | - |
814
+ | 2.0 | 58 | - | 0.2092 | 0.2161 | 0.2341 | 0.1983 |
815
+ | 2.0690 | 60 | 3.6676 | - | - | - | - |
816
+ | 2.4138 | 70 | 3.0414 | - | - | - | - |
817
+ | 2.7586 | 80 | 2.5451 | - | - | - | - |
818
+ | 3.0 | 87 | - | 0.2091 | 0.2137 | 0.2426 | 0.1868 |
819
+ | 3.1034 | 90 | 2.7694 | - | - | - | - |
820
+ | 3.4483 | 100 | 2.3624 | - | - | - | - |
821
+ | 3.7931 | 110 | 2.1016 | - | - | - | - |
822
+ | **4.0** | **116** | **-** | **0.2139** | **0.2137** | **0.2271** | **0.1964** |
823
+ | 4.1379 | 120 | 2.3842 | - | - | - | - |
824
+ | 4.4828 | 130 | 1.9261 | - | - | - | - |
825
+ | 4.8276 | 140 | 1.9737 | - | - | - | - |
826
+ | 5.0 | 145 | - | 0.2117 | 0.2149 | 0.2318 | 0.1946 |
827
+
828
+ * The bold row denotes the saved checkpoint.
829
+
830
+ ### Framework Versions
831
+ - Python: 3.10.14
832
+ - Sentence Transformers: 3.0.1
833
+ - Transformers: 4.41.2
834
+ - PyTorch: 2.1.2+cu121
835
+ - Accelerate: 0.31.0
836
+ - Datasets: 2.19.1
837
+ - Tokenizers: 0.19.1
838
+
839
+ ## Citation
840
+
841
+ ### BibTeX
842
+
843
+ #### Sentence Transformers
844
+ ```bibtex
845
+ @inproceedings{reimers-2019-sentence-bert,
846
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
847
+ author = "Reimers, Nils and Gurevych, Iryna",
848
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
849
+ month = "11",
850
+ year = "2019",
851
+ publisher = "Association for Computational Linguistics",
852
+ url = "https://arxiv.org/abs/1908.10084",
853
+ }
854
+ ```
855
+
856
+ #### MatryoshkaLoss
857
+ ```bibtex
858
+ @misc{kusupati2024matryoshka,
859
+ title={Matryoshka Representation Learning},
860
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
861
+ year={2024},
862
+ eprint={2205.13147},
863
+ archivePrefix={arXiv},
864
+ primaryClass={cs.LG}
865
+ }
866
+ ```
867
+
868
+ #### MultipleNegativesRankingLoss
869
+ ```bibtex
870
+ @misc{henderson2017efficient,
871
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
872
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
873
+ year={2017},
874
+ eprint={1705.00652},
875
+ archivePrefix={arXiv},
876
+ primaryClass={cs.CL}
877
+ }
878
+ ```
879
+
880
+ <!--
881
+ ## Glossary
882
+
883
+ *Clearly define terms in order to be accessible across audiences.*
884
+ -->
885
+
886
+ <!--
887
+ ## Model Card Authors
888
+
889
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
890
+ -->
891
+
892
+ <!--
893
+ ## Model Card Contact
894
+
895
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
896
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8eed713ba7c6b76b74e2bba5495704c285b128b693071f5c62992e7778953f57
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff