--- tags: - merge - mergekit - lazymergekit - NousResearch/Hermes-2-Pro-Mistral-7B - instructlab/merlinite-7b-lab base_model: - NousResearch/Hermes-2-Pro-Mistral-7B - instructlab/merlinite-7b-lab license: apache-2.0 --- # TriMistral-7B-DARETIES TriMistral-7B-DARETIES is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) * [instructlab/merlinite-7b-lab](https://huggingface.co/instructlab/merlinite-7b-lab) Special thanks to Charles Goddard for the quick implementation! ## 🧩 Configuration ```yaml models: - model: HuggingFaceH4/zephyr-7b-beta # No parameters necessary for base model - model: NousResearch/Hermes-2-Pro-Mistral-7B parameters: density: 0.53 weight: 0.4 - model: instructlab/merlinite-7b-lab parameters: density: 0.53 weight: 0.3 merge_method: dare_ties base_model: HuggingFaceH4/zephyr-7b-beta parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Muhammad2003/TriMistral-7B-DARETIES" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## 🏆 Evaluation Coming Soon!