MuryTheReaper commited on
Commit
2ba0e75
·
verified ·
1 Parent(s): 5b55c3d

layoutlmv3-finetuned-cord_gpu

Browse files
Files changed (1) hide show
  1. README.md +18 -3
README.md CHANGED
@@ -3,6 +3,11 @@ license: cc-by-nc-sa-4.0
3
  base_model: microsoft/layoutlmv3-base
4
  tags:
5
  - generated_from_trainer
 
 
 
 
 
6
  model-index:
7
  - name: layoutlmv3-finetuned-cord_gpu
8
  results: []
@@ -14,6 +19,12 @@ should probably proofread and complete it, then remove this comment. -->
14
  # layoutlmv3-finetuned-cord_gpu
15
 
16
  This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
 
 
 
 
 
 
17
 
18
  ## Model description
19
 
@@ -33,15 +44,19 @@ More information needed
33
 
34
  The following hyperparameters were used during training:
35
  - learning_rate: 1e-05
36
- - train_batch_size: 5
37
- - eval_batch_size: 5
38
  - seed: 42
39
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
40
  - lr_scheduler_type: linear
41
- - training_steps: 10
42
 
43
  ### Training results
44
 
 
 
 
 
45
 
46
 
47
  ### Framework versions
 
3
  base_model: microsoft/layoutlmv3-base
4
  tags:
5
  - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
  model-index:
12
  - name: layoutlmv3-finetuned-cord_gpu
13
  results: []
 
19
  # layoutlmv3-finetuned-cord_gpu
20
 
21
  This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.3983
24
+ - Precision: 0.8664
25
+ - Recall: 0.8625
26
+ - F1: 0.8644
27
+ - Accuracy: 0.8969
28
 
29
  ## Model description
30
 
 
44
 
45
  The following hyperparameters were used during training:
46
  - learning_rate: 1e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 8
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
+ - training_steps: 650
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 2.5 | 250 | 0.6325 | 0.8341 | 0.8290 | 0.8316 | 0.8558 |
59
+ | 0.9598 | 5.0 | 500 | 0.3983 | 0.8664 | 0.8625 | 0.8644 | 0.8969 |
60
 
61
 
62
  ### Framework versions