Mxode commited on
Commit
668aa56
1 Parent(s): 47a926f

Upload train.py

Browse files
Files changed (1) hide show
  1. train.py +87 -0
train.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset
2
+ from tokenizers import (
3
+ decoders,
4
+ models,
5
+ normalizers,
6
+ pre_tokenizers,
7
+ processors,
8
+ trainers,
9
+ Tokenizer,
10
+ Regex,
11
+ )
12
+ from transformers import PreTrainedTokenizerFast, PreTrainedTokenizerBase
13
+ from tqdm import tqdm
14
+
15
+ dataset = load_dataset(
16
+ "parquet", data_dir="Mxode/IndustryCorpus-Subset-zh-en", split="train")
17
+ dataset = dataset.shuffle(seed=3407)
18
+
19
+ ds = dataset[:1000000]
20
+ ds_val = dataset[-10000:]
21
+ char_len = sum(len(x) for x in ds_val['text'])
22
+
23
+
24
+ def get_training_corpus():
25
+ for i in range(0, len(ds), 1000):
26
+ yield ds["text"][i: i + 1000]
27
+
28
+
29
+ def train():
30
+ tokenizer = Tokenizer(models.BPE())
31
+ tokenizer.normalizer = normalizers.NFC()
32
+ tokenizer.pre_tokenizer = pre_tokenizers.Sequence([
33
+ pre_tokenizers.Split(
34
+ pattern=Regex(
35
+ "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"),
36
+ behavior="isolated",
37
+ invert=False,
38
+ ),
39
+ pre_tokenizers.ByteLevel(
40
+ add_prefix_space=False,
41
+ use_regex=False,
42
+ trim_offsets=False
43
+ )
44
+ ])
45
+ trainer = trainers.BpeTrainer(
46
+ vocab_size=16000,
47
+ special_tokens=["<|endoftext|>", "<|im_start|>", "<|im_end|>"]
48
+ )
49
+ tokenizer.train_from_iterator(get_training_corpus(), trainer=trainer)
50
+ tokenizer.post_processor = processors.ByteLevel(
51
+ add_prefix_space=False,
52
+ use_regex=False,
53
+ trim_offsets=False
54
+ )
55
+ tokenizer.decoder = decoders.ByteLevel(
56
+ add_prefix_space=False,
57
+ use_regex=False,
58
+ trim_offsets=False
59
+ )
60
+ wrapped_tokenizer = PreTrainedTokenizerFast(
61
+ tokenizer_object=tokenizer,
62
+ bos_token="<|endoftext|>",
63
+ eos_token="<|im_end|>",
64
+ pad_token="<|endoftext|>",
65
+ model_max_length=4096,
66
+ clean_up_tokenization_spaces=False,
67
+ errors="replace",
68
+ split_special_tokens=False,
69
+ )
70
+ wrapped_tokenizer.chat_template = """{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"""
71
+ wrapped_tokenizer.save_pretrained(
72
+ 'Mxode/Bilingual-Tokenizer/BilingualTokenizer-16K')
73
+ return wrapped_tokenizer
74
+
75
+
76
+ def eval(tokenizer: PreTrainedTokenizerBase):
77
+ def get_compress_len(tokenizer):
78
+ return sum(len(tokenizer(x, return_tensors=None)['input_ids']) for x in tqdm(ds_val['text']))
79
+
80
+ compress_len = get_compress_len(tokenizer)
81
+ compression_rate = compress_len / char_len * 100
82
+ print(f'{len(tokenizer):<40} {compression_rate:.2f}%')
83
+
84
+
85
+ if __name__ == "__main__":
86
+ tokenizer = train()
87
+ eval(tokenizer)