--- license: gpl-3.0 datasets: - Mxode/IndustryCorpus-Subset-zh-en --- # **Bilingual Tokenizer** A portion of the data from the [IndustryCorpus-Subset-zh-en](https://huggingface.co/datasets/Mxode/IndustryCorpus-Subset-zh-en) dataset was used for training. This dataset consists of **Chinese and English bilingual text**. 10,000 samples were taken from the untrained portion to test the compression rate of the tokenizer. Compression rate formula: $$ \text{Compression rate} = \frac{\text{length after tokenization}}{\text{character length of the original corpus}} $$ Here is the test result: | Model | Tokenizer Size | Compression Rate | | :----------------------------------------------------------: | :------------: | :------------: | | [deepseek-llm-7b-base](https://huggingface.co/deepseek-ai/deepseek-llm-7b-base) | 100015 | 36.63% | | [deepseek-coder-33b-base](https://huggingface.co/deepseek-ai/deepseek-coder-33b-base) | 32022 | 41.75% | | [gemma-2-27b](https://huggingface.co/google/gemma-2-27b) | 256000 | 37.75% | | [glm-4-9b](https://huggingface.co/THUDM/glm-4-9b) | 151343 | 34.26% | | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | 92550 | 35.15% | | [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) | 32000 | 63.33% | | [Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) | 128256 | 41.48% | | [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) | 32768 | 52.43% | | [Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) | 32011 | 63.29% | | [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) | 151646 | 35.91% | | [Yi-1.5-9B](https://huggingface.co/01-ai/Yi-1.5-9B) | 63992 | 36.86% | | BilingualTokenizer-1K | 1000 | 75.61% | | BilingualTokenizer-2K | 2000 | 62.26% | | BilingualTokenizer-4K | 4000 | 52.81% | | BilingualTokenizer-8K | 8000 | 45.92% | | BilingualTokenizer-16K | 16000 | 40.94% |