Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,91 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- code
|
7 |
+
- knowledge extraction
|
8 |
+
- tiny
|
9 |
+
- small
|
10 |
---
|
11 |
+
A model that can **extract the knowledge points** involved from a given **C language code**.
|
12 |
+
|
13 |
+
The base model is [pythia-70m](https://huggingface.co/EleutherAI/pythia-70m). This model was fine-tuned with 10 epochs using [Q-Lora](https://github.com/artidoro/qlora) method on my own training set.
|
14 |
+
|
15 |
+
A usage example is as follows, first import the model and prepare the code:
|
16 |
+
|
17 |
+
```python
|
18 |
+
from transformers import GPTNeoXForCausalLM, AutoTokenizer
|
19 |
+
|
20 |
+
model_name_or_path = 'Mxode/Pythia-70m-C-Language-KnowledgeExtract'
|
21 |
+
device = 'cuda'
|
22 |
+
|
23 |
+
model = GPTNeoXForCausalLM.from_pretrained(model_name_or_path).to(device)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
25 |
+
|
26 |
+
instruction = '[Summarize the knowledge points in the code below]\n' # instruction template
|
27 |
+
# any c-lang pieces you like, could be partial functions or statements
|
28 |
+
input_content = '''```c
|
29 |
+
int partition(int arr[], int low, int high) {
|
30 |
+
int pivot = arr[high];
|
31 |
+
int i = (low - 1);
|
32 |
+
for (int j = low; j <= high - 1; j++) {
|
33 |
+
if (arr[j] < pivot) {
|
34 |
+
i++;
|
35 |
+
swap(&arr[i], &arr[j]);
|
36 |
+
}
|
37 |
+
}
|
38 |
+
swap(&arr[i + 1], &arr[high]);
|
39 |
+
return (i + 1);
|
40 |
+
}
|
41 |
+
|
42 |
+
void quickSort(int arr[], int low, int high) {
|
43 |
+
if (low < high) {
|
44 |
+
int pi = partition(arr, low, high);
|
45 |
+
quickSort(arr, low, pi - 1);
|
46 |
+
quickSort(arr, pi + 1, high);
|
47 |
+
}
|
48 |
+
}
|
49 |
+
```'''
|
50 |
+
text = instruction + input_content
|
51 |
+
```
|
52 |
+
|
53 |
+
Then generate:
|
54 |
+
|
55 |
+
```python
|
56 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
57 |
+
tokens = model.generate(
|
58 |
+
**inputs,
|
59 |
+
pad_token_id=tokenizer.eos_token_id,
|
60 |
+
max_new_tokens=32,
|
61 |
+
)
|
62 |
+
response = tokenizer.decode(tokens[0]).split('```')[-1].split('<')[0] # deduplicate inputs
|
63 |
+
```
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
However, in practical use, in order to achieve more diverse representations, it's recommended to do multiple inferences. Don't worry, it's really small so the inferences don't take much time, as follows:
|
68 |
+
|
69 |
+
```python
|
70 |
+
ans_dict = {}
|
71 |
+
def increment_insert(key):
|
72 |
+
ans_dict[key] = ans_dict.get(key, 0) + 1
|
73 |
+
|
74 |
+
for i in range(30): # maybe 20 times or less enough too
|
75 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
76 |
+
tokens = model.generate(
|
77 |
+
**inputs,
|
78 |
+
pad_token_id=tokenizer.eos_token_id,
|
79 |
+
max_new_tokens=32,
|
80 |
+
do_sample=True,
|
81 |
+
temperature=2.0, # high temperature for diversity
|
82 |
+
top_p=0.95,
|
83 |
+
top_k=30,
|
84 |
+
)
|
85 |
+
response = tokenizer.decode(tokens[0]).split('```')[-1].split('<')[0]
|
86 |
+
increment_insert(response)
|
87 |
+
|
88 |
+
print(ans_dict)
|
89 |
+
### output as below, could take high-freq answers
|
90 |
+
### {'Backtracking': 1, 'Heap': 1, 'Quick sort': 25, 'Recurrence': 2, 'Queue': 1}
|
91 |
+
```
|