# Spider-TriviaQA: Context Encoder This is the context encoder of the model fine-tuned on TriviaQA (and initialized from Spider) discussed in our paper [Learning to Retrieve Passages without Supervision](https://arxiv.org/abs/2112.07708). ## Usage We used weight sharing for the query encoder and passage encoder, so the same model should be applied for both. **Note**! We format the passages similar to DPR, i.e. the title and the text are separated by a `[SEP]` token, but token type ids are all 0-s. An example usage: ```python from transformers import AutoTokenizer, DPRQuestionEncoder tokenizer = AutoTokenizer.from_pretrained("NAACL2022/spider-trivia-ctx-encoder") model = DPRQuestionEncoder.from_pretrained("NAACL2022/spider-trivia-ctx-encoder") question = "Who is the villain in lord of the rings" input_dict = tokenizer(question, return_tensors="pt") del input_dict["token_type_ids"] outputs = model(**input_dict) ```