omarelshehy commited on
Commit
e1b791a
·
verified ·
1 Parent(s): a691bc5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -2
README.md CHANGED
@@ -11,8 +11,27 @@ tags:
11
  - sentence-transformers
12
  ---
13
 
14
- base model : Omartificial-Intelligence-Space/GATE-AraBert-v1
15
- Arabic-mmarco-triplet
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  ## Usage
18
 
@@ -29,3 +48,5 @@ Paragraph2 = 'الذكاء الاصطناعي يستخدم في تحسين ال
29
 
30
  scores = model.predict([(Query, Paragraph1), (Query, Paragraph2)])
31
  ```
 
 
 
11
  - sentence-transformers
12
  ---
13
 
14
+ # GATE-Reranker-V1 🚀✨
15
+
16
+ **NAMAA-space** releases **GATE-Reranker-V1**, a high-performance model fine-tuned to elevate Arabic document retrieval and ranking to new heights! 📚🇸🇦
17
+
18
+ This model is designed to **improve search relevance** of **arabic** documents by accurately ranking documents based on their contextual fit for a given query.
19
+
20
+ ## Key Features 🔑
21
+ - **Optimized for Arabic**: Built with rich Arabic data, this model understands both Modern Standard Arabic (MSA) and diverse dialects, making it highly effective across various Arabic-speaking regions.
22
+ - **Advanced Document Ranking**: Ranks results with precision, perfect for search engines, recommendation systems, and question-answering applications.
23
+ - **State-of-the-Art Performance**: Achieves exceptional benchmarks on Arabic datasets ((See [Evaluation](https://huggingface.co/omarelshehy/Arabic-STS-Matryoshka#evaluation))), ensuring reliable relevance and precision.
24
+
25
+ Whether you’re looking to enhance Arabic search results, improve information retrieval, or develop an intelligent Arabic chatbot, the NAMAA Space Reranker is here to support your journey! 🌐✨
26
+
27
+ ## Example Use Cases 💼
28
+ - **Search Engine Ranking**: Improve search result relevance for Arabic content.
29
+ - **Content Recommendation**: Deliver top-tier Arabic content suggestions.
30
+ - **Question Answering**: Boost answer retrieval quality in Arabic-focused systems.
31
+
32
+ ## Get Started 🚀
33
+ Load and test the NAMAA Space Reranker today and bring accurate, context-aware Arabic ranking to your project!
34
+
35
 
36
  ## Usage
37
 
 
48
 
49
  scores = model.predict([(Query, Paragraph1), (Query, Paragraph2)])
50
  ```
51
+
52
+ ## Evaluation