Update README.md
Browse files
README.md
CHANGED
@@ -9,11 +9,6 @@ thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
|
|
9 |
license: mit
|
10 |
pipeline_tag: zero-shot-classification
|
11 |
---
|
12 |
-
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
|
13 |
-
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data.
|
14 |
-
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
|
15 |
-
This is the DeBERTa large model fine-tuned with MNLI task.
|
16 |
-
#### Fine-tuning on NLU tasks
|
17 |
We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
|
18 |
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B |
|
19 |
|---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------|
|
@@ -28,22 +23,5 @@ We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
|
|
28 |
--------
|
29 |
#### Notes.
|
30 |
- <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks.
|
31 |
-
- <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**,
|
32 |
-
|
33 |
-
```bash
|
34 |
-
cd transformers/examples/text-classification/
|
35 |
-
export TASK_NAME=mrpc
|
36 |
-
python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\\n--task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\\n--learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16
|
37 |
-
```
|
38 |
-
### Citation
|
39 |
-
If you find DeBERTa useful for your work, please cite the following paper:
|
40 |
-
``` latex
|
41 |
-
@inproceedings{
|
42 |
-
he2021deberta,
|
43 |
-
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
|
44 |
-
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
|
45 |
-
booktitle={International Conference on Learning Representations},
|
46 |
-
year={2021},
|
47 |
-
url={https://openreview.net/forum?id=XPZIaotutsD}
|
48 |
-
}
|
49 |
-
```
|
|
|
9 |
license: mit
|
10 |
pipeline_tag: zero-shot-classification
|
11 |
---
|
|
|
|
|
|
|
|
|
|
|
12 |
We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
|
13 |
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B |
|
14 |
|---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------|
|
|
|
23 |
--------
|
24 |
#### Notes.
|
25 |
- <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks.
|
26 |
+
- <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, we recommand using **deepspeed** as it's faster and saves memory.
|
27 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|