CodeS-1B-GerarSQL-v1-1071-steps / tokenizer_config.json
lleticiasilvaa's picture
Upload tokenizer
e82f512 verified
{
"add_bos_token": false,
"add_eos_token": true,
"add_prefix_space": false,
"added_tokens_decoder": {
"0": {
"content": "<|endoftext|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"1": {
"content": "<fim_prefix>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"2": {
"content": "<fim_middle>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"3": {
"content": "<fim_suffix>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"4": {
"content": "<fim_pad>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"5": {
"content": "<filename>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"6": {
"content": "<gh_stars>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"7": {
"content": "<issue_start>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"8": {
"content": "<issue_comment>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"9": {
"content": "<issue_closed>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"10": {
"content": "<jupyter_start>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"11": {
"content": "<jupyter_text>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"12": {
"content": "<jupyter_code>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"13": {
"content": "<jupyter_output>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"14": {
"content": "<empty_output>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"15": {
"content": "<commit_before>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"16": {
"content": "<commit_msg>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"17": {
"content": "<commit_after>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"18": {
"content": "<reponame>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"additional_special_tokens": [
"<|endoftext|>",
"<fim_prefix>",
"<fim_middle>",
"<fim_suffix>",
"<fim_pad>",
"<filename>",
"<gh_stars>",
"<issue_start>",
"<issue_comment>",
"<issue_closed>",
"<jupyter_start>",
"<jupyter_text>",
"<jupyter_code>",
"<jupyter_output>",
"<empty_output>",
"<commit_before>",
"<commit_msg>",
"<commit_after>",
"<reponame>"
],
"bos_token": "<|endoftext|>",
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = 'Given a user question and the schema of a database, your task is to generate an SQL query that accurately answers the question based on the provided schema.' %}{% endif %}{{ system_message + '\n\n' }}{% for message in loop_messages %}{% if message['role'] == 'example' %}{{ message['content'] }}\n\n{% elif message['role'] == 'schema' %}{{ message['content'] }}\n\n{% elif message['role'] == 'user' %}{{ message['content'] }}\n\n{% elif message['role'] == 'assistant' %}{{ message['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}\n{% endif %}",
"clean_up_tokenization_spaces": true,
"eos_token": "<|endoftext|>",
"errors": "replace",
"map_device": "auto",
"model_max_length": 1000000000000000019884624838656,
"pad_token": "<|endoftext|>",
"tokenizer_class": "GPT2Tokenizer",
"unk_token": "<|endoftext|>",
"vocab_size": 49152
}