mental-alpaca / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
ac9be13 verified
|
raw
history blame
6.56 kB
---
language:
- en
license: cc-by-nc-4.0
tags:
- mental
- mental health
- large language model
- alpaca
model-index:
- name: mental-alpaca
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 28.58
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NEU-HAI/mental-alpaca
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 26.02
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NEU-HAI/mental-alpaca
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.04
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NEU-HAI/mental-alpaca
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 48.61
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NEU-HAI/mental-alpaca
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 48.38
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NEU-HAI/mental-alpaca
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NEU-HAI/mental-alpaca
name: Open LLM Leaderboard
---
# Model Card for mental-alpaca
<!-- Provide a quick summary of what the model is/does. -->
This is a fine-tuned large language model for mental health prediction via online text data.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
We fine-tune an Alpaca model with 4 high-quality text (6 tasks in total) datasets for the mental health prediction scenario: Dreaddit, DepSeverity, SDCNL, and CCRS-Suicide.
We have a separate model, fine-tuned on FLAN-T5-XXL, namely Mental-FLAN-T5, shared [here](https://huggingface.co/NEU-HAI/mental-flan-t5-xxl)
- **Developed by:** Northeastern University Human-Centered AI Lab
- **Model type:** Sequence-to-sequence Text-generation
- **Language(s) (NLP):** English
- **License:** cc-by-nc-4.0
- **Finetuned from model:** https://github.com/tatsu-lab/stanford_alpaca
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/neuhai/Mental-LLM
- **Paper:** https://arxiv.org/abs/2307.14385
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
The model is intended to be used for research purposes only in English.
The model has been fine-tuned for mental health prediction via online text data. Detailed information about the fine-tuning process and prompts can be found in our [paper](https://arxiv.org/abs/2307.14385).
The use of this model should also comply with the restrictions from [stanford_alpaca project](https://github.com/tatsu-lab/stanford_alpaca) and [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b).
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
The out-of-scope use of this model should comply with [stanford_alpaca project](https://github.com/tatsu-lab/stanford_alpaca) and [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b).
## Bias, Risks, and Limitations
The Bias, Risks, and Limitations of this model should also comply with [stanford_alpaca project](https://github.com/tatsu-lab/stanford_alpaca) and [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b).
## How to Get Started with the Model
Use the code below to get started with the model.
```
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("NEU-HAI/Llama-2-7b-alpaca-cleaned")
model = AutoModelForCausalLM.from_pretrained("NEU-HAI/Llama-2-7b-alpaca-cleaned")
```
## Training Details and Evaluation
Detailed information about our work can be found in our [paper](https://arxiv.org/abs/2307.14385).
## Citation
```
@article{xu2023leveraging,
title={Mental-LLM: Leveraging large language models for mental health prediction via online text data},
author={Xu, Xuhai and Yao, Bingshen and Dong, Yuanzhe and Gabriel, Saadia and Yu, Hong and Ghassemi, Marzyeh and Hendler, James and Dey, Anind K and Wang, Dakuo},
journal={arXiv preprint arXiv:2307.14385},
year={2023}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_NEU-HAI__mental-alpaca)
| Metric |Value|
|---------------------------------|----:|
|Avg. |29.77|
|AI2 Reasoning Challenge (25-Shot)|28.58|
|HellaSwag (10-Shot) |26.02|
|MMLU (5-Shot) |27.04|
|TruthfulQA (0-shot) |48.61|
|Winogrande (5-shot) |48.38|
|GSM8k (5-shot) | 0.00|