File size: 9,355 Bytes
16cec3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
---
license: llama2
---
# MeteoRA: Multiple-tasks Embedded LoRA for Large Language Models
This repository contains the models used in the [paper](https://arxiv.org/abs/2405.13053) "MeteoRA: Multiple-tasks Embedded LoRA for Large Language Models".
The corresponding GitHub repository is [MeteoRA](https://github.com/ParagonLight/meteor-of-lora).

## Overal performance
### General performance of MeteoRA embeded LLMs with 28 LoRA adapters
We successfully apply MeteoRA to both LlaMA2-13B and LlaMA3-8B. Each model equips 28 tasks embedded in 28 LoRA adapters, respectively.
The performance of MeteoRA is comparable to the state-of-the-art. Refer to our paper for the detailed information of evaluation settings.
<!-- Evaluation results of models based on LlaMA2-13B:

Evaluation results of models based on LlaMA3-8B:
 -->
<table>
<tr>
<td><img src="images/llama2_13b_radar_graph_v3.png" alt="LlaMA2-13B" width="300"/></td>
<td><img src="images/llama3_8b_radar_graph_v3.png" alt="LlaMA3-8B" width="300"/></td>
</tr>
</table>
MeteoRA with LlaMA2-13B MeteoRA with LlaMA3-8B
### Example of *composite-3* tasks
We highlight the statistically dominant LoRA selected by MeteoRA in token level (decoded to words). The result shows that LLM with MeteoRA could achieve timely LoRA switching on both phases of input understanding and output generation. The background color gets darker when Gating network assigns a higher weight value.

## Directory structure
- `llama3_8b_lora_b`: Contains one LoRA adapter fine-tuned with 28 tasks together in balanced-dataset mode (1,000 samples for each task).
- `llama3_8b_lora_f`: Contains one LoRA adapter fine-tuned with 28 tasks together in full-dataset mode.
- `llama3_8b_meteora`: Contains the LlaMA3-8b base model equipped with MeteoRA. Both top-1 and top-2 versions included.
- `llama3_8b_peft`: Contains 28 LoRA adapters fine-tuned for 28 tasks, respectively.
## Usage
### Preparation
0. Clone the GitHub repository [MeteoRA](https://github.com/ParagonLight/meteor-of-lora).
1. Install necessary packages:
```shell
pip install -r requirements.txt
```
2. Prepare the datasets. MeteoRA requires datasets in JSONL format. The tasks are primarily selected from the BIGBench dataset in the paper, which is in JSON format. To convert them to JSONL format, run:
```shell
cd data
python create_dataset.py --task all
```
To create a specific dataset, use:
```shell
cd data
python create_dataset.py --task <task_name>
```
3. Prepare *composite-n* tasks. Refer to our paper for the definition of *composite-n* tasks. Generate these tasks using:
```shell
python create_composite.py --n <n>
```
We prepared `n=3`, `n=5` and `n=10` few-shot dataset generating code. Before generation, please ensure that the sub-tasks to composite *composite-n* task have been included in `data/datasets`.
4. Prepare LoRA adapters and MeteoRA model checkpoints. You can train them yourself or download ours pre-trained models ([MeteoRA with LlaMA2](https://huggingface.co/ParagonLight/MeteoRA-llama2-13b) and [MeteoRA with LlaMA3](https://huggingface.co/ParagonLight/MeteoRA-llama3-8b) as base model):
```shell
python download_ckpt.py
```
5. Update file paths in `configs/config.yaml`. Example paths:
```yaml
base_model_path: 'meta-llama3/Meta-Llama-3-8B'
meteora_ckpt_path: 'ckpt/llama3_8b/llama3_8b_meteora/top_2'
adapter_dir: 'ckpt/llama3_8b/llama3_8b_peft'
```
### Evaluation
Run a benchmark with the MeteoRA model:
```shell
python eval_model.py --task <task_name> --batch_size <batch_size>
```
For example:
```shell
python eval_model.py --task composite_10 --batch_size 4
```
**Note:** For *composite-n* tasks, set a larger *temperature* value (`self.T` in `MoELoRA/layer.py`). Use `15`, `20`, and `30` for `n=3`, `n=5`, and `n=10`, respectively. For single tasks, use the default value (`self.T=1`).
To save the evaluation result:
```shell
python eval_model.py --task <task_name> --batch_size <batch_size> --save
```
For debug mode (model output and ground truth will be shown in the console):
```shell
python eval_model.py --task <task_name> --batch_size <batch_size> --debug
```
Run a benchmark with the PEFT model:
```shell
python eval_model.py --task <task_name> --batch_size <batch_size> --model <adapter_name>
```
### Training the MeteoRA Model
0. Prepare LoRA adapters and corresponding datasets in JSONL format. Ensure each LoRA adapter has a corresponding dataset. Place all LoRA adapters and datasets in their respective folders with matching subfolder names:
```
- lora_adapters
- adapter_name1
- adapter_name2
- ...
- datasets
- dataset_name1
- dataset_name2
- ...
```
1. Update file paths in `run_meteora_train_fsdp.sh`.
2. Train the MeteoRA model:
```shell
sh run_meteora_train_fsdp.sh
```
**Note:** The current version of Triton acceleration supports inference mode only. Use the following settings when training the MeteoRA model:
```shell
export MOELINEAR_USE_ACCELERATE_FWD=0
export MOELINEAR_FWD_INNER_LOOP_MODE='batch'
export MOELINEAR_ACCELERATE_FWD_BACKEND='torch'
export MOELINEAR_ACCELERATE_FWD_BACKEND_TORCH_VERSION='v1'
```
### Evaluation Results
#### *composite-n* results
The *composite-10* evaluation results are presented in details with MeteoRA results on the left side and LoRA-B results on the right side of each metric column. A dash ('-') indicates that the corresponding metric was not applicable or included in the evaluation. Note that the `0.00` BLEU scores are caused by mismatch and too insufficient answers.
| Sub-task Name | Accuracy↑ (MeteoRA) | Accuracy↑ (LoRA-B) | BLEU↑ (MeteoRA) | BLEU↑ (LoRA-B) | ROUGE-1↑ (MeteoRA) | ROUGE-1↑ (LoRA-B) | ROUGE-2↑ (MeteoRA) | ROUGE-2↑ (LoRA-B) | ROUGE-L↑ (MeteoRA) | ROUGE-L↑ (LoRA-B) |
|--------------------------------|---------------------|--------------------|-----------------|----------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|
| logical_deduction | 0.500↑ | 0.453 | - | - | - | - | - | - | - | - |
| question_selection | 0.703↑ | 0.688 | - | - | - | - | - | - | - | - |
| abstract_narrative_understanding| 0.625↓ | 0.672 | - | - | - | - | - | - | - | - |
| goal_step_wikihow | 0.773↑ | 0.727 | - | - | - | - | - | - | - | - |
| winowhy | 0.422↑ | 0.078 | - | - | - | - | - | - | - | - |
| strategyqa | 0.461↑ | 0.211 | 3.23↑ | 0.00 | 0.225↑ | 0.106 | 0.051↑ | 0.025 | 0.210↑ | 0.099 |
| disfl_qa | 0.266↑ | 0.117 | - | - | - | - | - | - | - | - |
| news_commentary_de | - | - | 14.78↑ | 14.54 | - | - | - | - | - | - |
| alpaca | - | - | 0.00↓ | 8.17 | 0.257↑ | 0.187 | 0.075 | 0.075 | 0.241↑ | 0.167 |
| linguistics_puzzles | - | - | 17.37↑ | 12.14 | 0.233↑ | 0.189 | 0.052↑ | 0.030 | 0.176↑ | 0.103 |
## Citation
If you use MeteoRA for your research, please cite our [paper](https://arxiv.org/abs/2405.13053):
```bibtex
@misc{xu2024meteora,
title={MeteoRA: Multiple-tasks Embedded LoRA for Large Language Models},
author={Jingwei Xu and Junyu Lai and Yunpeng Huang},
year={2024},
eprint={2405.13053},
archivePrefix={arXiv},
}
``` |