--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: whisper-small-rw results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: rw split: None args: rw metrics: - name: Wer type: wer value: 68.72705657437083 --- # whisper-small-rw This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.9918 - Wer: 68.7271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6952 | 1.0 | 1000 | 0.9920 | 70.5023 | | 0.4771 | 2.0 | 2000 | 0.9260 | 68.3624 | | 0.3132 | 3.0 | 3000 | 0.9506 | 68.0732 | | 0.2025 | 4.0 | 4000 | 0.9918 | 68.7271 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1