--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer metrics: - accuracy model-index: - name: outputs results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9107332624867163 --- # outputs This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the [PETA dataset](http://mmlab.ie.cuhk.edu.hk/projects/PETA_files/Pedestrian%20Attribute%20Recognition%20At%20Far%20Distance.pdf) dataset. It achieves the following results on the evaluation set: - Loss: 0.2170 - Accuracy: 0.9107 ## Model description More information needed #### How to use You can use this model with Transformers *pipeline* . ```python from transformers import pipeline gender_classifier = pipeline(model="NTQAI/pedestrian_gender_recognition") image_path = "abc.jpg" results = gender_classifier(image_path) print(results) ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5193 | 1.0 | 2000 | 0.3346 | 0.8533 | | 0.337 | 2.0 | 4000 | 0.2892 | 0.8778 | | 0.3771 | 3.0 | 6000 | 0.2493 | 0.8969 | | 0.3819 | 4.0 | 8000 | 0.2275 | 0.9100 | | 0.3581 | 5.0 | 10000 | 0.2170 | 0.9107 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1 ### Contact information For personal communication related to this project, please contact Nha Nguyen Van (nha.nguyen@ntq-solution.com.vn).