NX2411 commited on
Commit
c24491d
1 Parent(s): 037b98a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md CHANGED
@@ -1,3 +1,69 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: wav2vec2-large-xlsr-en-demo
7
+ results: []
8
  ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # wav2vec2-large-xlsr-en-demo
14
+
15
+ This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.1356
18
+ - Wer: 0.2015
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 1
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 4
42
+ - total_train_batch_size: 4
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 1000
46
+ - num_epochs: 5
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 5.3911 | 0.5 | 500 | 0.5397 | 0.2615 |
54
+ | 0.3413 | 1.01 | 1000 | 0.1423 | 0.2137 |
55
+ | 0.243 | 1.51 | 1500 | 0.1458 | 0.2210 |
56
+ | 0.2232 | 2.01 | 2000 | 0.1380 | 0.2143 |
57
+ | 0.162 | 2.51 | 2500 | 0.1464 | 0.2149 |
58
+ | 0.1384 | 3.02 | 3000 | 0.1348 | 0.2109 |
59
+ | 0.1164 | 3.52 | 3500 | 0.1324 | 0.2040 |
60
+ | 0.1103 | 4.02 | 4000 | 0.1310 | 0.2051 |
61
+ | 0.0857 | 4.53 | 4500 | 0.1356 | 0.2015 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.17.0
67
+ - Pytorch 1.12.1+cu113
68
+ - Datasets 1.18.3
69
+ - Tokenizers 0.12.1