File size: 2,294 Bytes
9244fb2 c552c00 c85efce 9244fb2 c552c00 9244fb2 c552c00 f493a8b c552c00 ddd724a c552c00 18159a5 c552c00 18159a5 c552c00 18159a5 c552c00 e947472 c552c00 e947472 c552c00 e947472 c552c00 e947472 c552c00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
language:
- hu
- en
- zh
tags:
- text-generation
- puli
license: cc-by-nc-4.0
widget:
- text: Elmesélek egy történetet a nyelvtechnológiáról.
---
# PULI GPTrio (6.7 billion parameter)
For further details read [our paper](http://real.mtak.hu/173960/1/TSD_2023_GPT.pdf) or testing our instruct model, see [our demo site](https://juniper.nytud.hu/demo/gptrio).
- Hungarian-English-Chinese trilingual GPT-NeoX model (6.7 billion parameter)
- Trained with EleutherAI's GPT-NeoX [github](https://github.com/EleutherAI/gpt-neox)
- Checkpoint: 410 000 steps
## Dataset
- Hungarian: 41.5 billion words (314 GB)
- English: 61.9 billion words (391 GB)
- Github: 6 million documents (33 GB)
- Chinese: 98.7 billion Chinese character (340 GB)
- (12 billion non Chinese token)
## Limitations
- max_seq_length = 2048
- float16
## Citation
If you use this model, please cite the following paper:
```
@inproceedings {yang-puli-gptrio,
title = {Mono- and multilingual GPT-3 models for Hungarian},
booktitle = {Text, Speech, and Dialogue},
year = {2023},
publisher = {Springer Nature Switzerland},
series = {Lecture Notes in Computer Science},
address = {Plzeň, Czech Republic},
author = {Yang, Zijian Győző and Laki, László János and Váradi, Tamás and Prószéky, Gábor},
pages = {94--104},
isbn = {978-3-031-40498-6}
}
```
## Usage
```python
from transformers import GPTNeoXForCausalLM, AutoTokenizer
model = GPTNeoXForCausalLM.from_pretrained("NYTK/PULI-GPTrio")
tokenizer = AutoTokenizer.from_pretrained("NYTK/PULI-GPTrio")
prompt = "Elmesélek egy történetet a nyelvtechnológiáról."
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
gen_tokens = model.generate(
input_ids,
do_sample=True,
temperature=0.9,
max_length=100,
)
gen_text = tokenizer.batch_decode(gen_tokens)[0]
print(gen_text)
```
## Usage with pipeline
```python
from transformers import pipeline, GPTNeoXForCausalLM, AutoTokenizer
model = GPTNeoXForCausalLM.from_pretrained("NYTK/PULI-GPTrio")
tokenizer = AutoTokenizer.from_pretrained("NYTK/PULI-GPTrio")
prompt = "Elmesélek egy történetet a nyelvtechnológiáról."
generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
print(generator(prompt)[0]["generated_text"])
``` |