--- language: - hu - en - zh tags: - text-generation - puli license: cc-by-nc-4.0 widget: - text: Elmesélek egy történetet a nyelvtechnológiáról. --- # PULI GPTrio (7.67B billion parameter) For further details read [our paper](http://real.mtak.hu/173960/1/TSD_2023_GPT.pdf) or testing our instruct model, see [our demo site](https://juniper.nytud.hu/demo/gptrio). - Hungarian-English-Chinese trilingual GPT-NeoX model (7.67B billion parameter) - Trained with EleutherAI's GPT-NeoX [github](https://github.com/EleutherAI/gpt-neox) - Checkpoint: 410 000 steps ## Dataset - Hungarian: 41.5 billion words (314 GB) - English: 61.9 billion words (391 GB) - Github: 6 million documents (33 GB) - Chinese: 98.7 billion Chinese character (340 GB) - (12 billion non Chinese token) ## Limitations - max_seq_length = 2048 - float16 - vocab size: 150 016 ## Citation If you use this model, please cite the following paper: ``` @inproceedings {yang-puli-gptrio, title = {Mono- and multilingual GPT-3 models for Hungarian}, booktitle = {Text, Speech, and Dialogue}, year = {2023}, publisher = {Springer Nature Switzerland}, series = {Lecture Notes in Computer Science}, address = {Plzeň, Czech Republic}, author = {Yang, Zijian Győző and Laki, László János and Váradi, Tamás and Prószéky, Gábor}, pages = {94--104}, isbn = {978-3-031-40498-6} } ``` ## Usage ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained("NYTK/PULI-GPTrio") tokenizer = AutoTokenizer.from_pretrained("NYTK/PULI-GPTrio") prompt = "Elmesélek egy történetet a nyelvtechnológiáról." input_ids = tokenizer(prompt, return_tensors="pt").input_ids gen_tokens = model.generate( input_ids, do_sample=True, temperature=0.9, max_length=100, ) gen_text = tokenizer.batch_decode(gen_tokens)[0] print(gen_text) ``` ## Usage with pipeline ```python from transformers import pipeline, GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained("NYTK/PULI-GPTrio") tokenizer = AutoTokenizer.from_pretrained("NYTK/PULI-GPTrio") prompt = "Elmesélek egy történetet a nyelvtechnológiáról." generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer) print(generator(prompt)[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_NYTK__PULI-GPTrio) | Metric | Value | |-----------------------|---------------------------| | Avg. | 30.07 | | ARC (25-shot) | 30.72 | | HellaSwag (10-shot) | 53.49 | | MMLU (5-shot) | 24.73 | | TruthfulQA (0-shot) | 39.03 | | Winogrande (5-shot) | 57.77 | | GSM8K (5-shot) | 0.76 | | DROP (3-shot) | 4.03 |