File size: 2,648 Bytes
7eb1aa1 a0a0abe 5af3567 a0a0abe 7eb1aa1 5af3567 5e243b0 5af3567 05bba9b 8190f67 5af3567 b1db7fb 457c138 b1db7fb 457c138 b1db7fb 5af3567 99ebf06 7c794b6 99ebf06 7c794b6 5af3567 77a231d 5af3567 f5f73ed 77a231d 5af3567 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: mit
language:
- hu
tags:
- text-classification
metrics:
- accuracy
widget:
- text: >-
Kovácsné Nagy Erzsébet </s> A Kovácsné Nagy Erzsébet nagyon jól érzi magát a
Nokiánál, azonban a Németországból érkezett Kovács Péter nehezen boldogul a
beilleszkedéssel.
example_title: positive
- text: >-
Kovács Péter </s> A Kovácsné Nagy Erzsébet nagyon jól érzi magát a Nokiánál,
azonban a Németországból érkezett Kovács Péter nehezen boldogul a
beilleszkedéssel.
example_title: negative
- text: >-
Kovácsné Nagy Erzsébet </s> A Kovácsné Nagy Erzsébet azt mondta, hogy a
Németországból érkezett Kovács Péter nehezen boldogul a beilleszkedéssel.
example_title: neutral
---
# Hungarian Aspect-based Sentiment Analysis with finetuned XLM-RoBERTa model
For further models, scripts and details, see [our repository](https://github.com/nytud/sentiment-analysis) or [our demo site](https://juniper.nytud.hu/demo/nlp).
- Pretrained model used: XLM-RoBERTa
- Finetuned on OpinHuBank (OHB) Corpus
- Labels: 0 (negative), 2 (neutral), 3 (positive)
- Separator: \</s\>
## Limitations
- max_seq_length = 256
## Results
| Model | OHB |
| ------------- | ------------- |
| huBERT | 82.30 |
| XLM-R | 80.59 |
## Usage with pipeline
```python
from transformers import pipeline
classification = pipeline(task="sentiment-analysis", model="NYTK/sentiment-ohb3-xlm-roberta-hungarian")
input_text = "Kovácsné Nagy Erzsébet </s> A Kovácsné Nagy Erzsébet nagyon jól érzi magát a Nokiánál, azonban a Németországból érkezett Kovács Péter nehezen boldogul a beilleszkedéssel."
print(classification(input_text)[0])
```
## Citation
If you use this model, please cite the following paper:
```
@article {laki-yang-sentiment,
author = {Laki, László János and Yang, Zijian Győző},
title = {Sentiment Analysis with Neural Models for Hungarian},
journal = {Acta Polytechnica Hungarica},
year = {2023},
publisher = {Obuda University},
volume = {20},
number = {5},
doi = {10.12700/APH.20.5.2023.5.8},
pages= {109--128},
url = {https://acta.uni-obuda.hu/Laki_Yang_134.pdf}
}
```
```
@inproceedings {yang-asent,
title = {Neurális entitásorientált szentimentelemző alkalmazás magyar nyelvre},
booktitle = {XIX. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2023)},
year = {2023},
publisher = {Szegedi Tudományegyetem, Informatikai Intézet},
address = {Szeged, Hungary},
author = {Yang, Zijian Győző and Laki, László János},
pages = {107--117}
}
``` |