File size: 5,247 Bytes
14975f0 8ccfdb2 8f6b310 f34442d 8f6b310 14975f0 8f6b310 14975f0 8f6b310 14975f0 8f6b310 717bfb5 8f6b310 72b515e e4829d7 8f6b310 717bfb5 8f6b310 14975f0 8f6b310 ceae615 8f6b310 8ccfdb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-xl-base-1.0
dataset: NYUAD-ComNets/Asian_Male_Profession
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# Model description
This model is a part of project targeting Debiasing of generative stable diffusion models.
LoRA text2image fine-tuning - NYUAD-ComNets/Asian_Male_Profession_Model
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the NYUAD-ComNets/Asian_Male_Profession dataset.
You can find some example images.
prompt: a photo of a {profession}, looking at the camera, closeup headshot facing forward, ultra quality, sharp focus
# How to use this model:
``` python
import torch
from compel import Compel, ReturnedEmbeddingsType
from diffusers import DiffusionPipeline
import random
negative_prompt = "cartoon, anime, 3d, painting, b&w, low quality"
models=["NYUAD-ComNets/Asian_Female_Profession_Model","NYUAD-ComNets/Black_Female_Profession_Model","NYUAD-ComNets/White_Female_Profession_Model",
"NYUAD-ComNets/Indian_Female_Profession_Model","NYUAD-ComNets/Latino_Hispanic_Female_Profession_Model","NYUAD-ComNets/Middle_Eastern_Female_Profession_Model",
"NYUAD-ComNets/Asian_Male_Profession_Model","NYUAD-ComNets/Black_Male_Profession_Model","NYUAD-ComNets/White_Male_Profession_Model",
"NYUAD-ComNets/Indian_Male_Profession_Model","NYUAD-ComNets/Latino_Hispanic_Male_Profession_Model","NYUAD-ComNets/Middle_Eastern_Male_Profession_Model"]
adapters=["asian_female","black_female","white_female","indian_female","latino_female","middle_east_female",
"asian_male","black_male","white_male","indian_male","latino_male","middle_east_male"]
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", variant="fp16", use_safetensors=True, torch_dtype=torch.float16).to("cuda")
for i,j in zip(models,adapters):
pipeline.load_lora_weights(i, weight_name="pytorch_lora_weights.safetensors",adapter_name=j)
pipeline.set_adapters(random.choice(adapters))
compel = Compel(tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2] ,
text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],truncate_long_prompts=False)
conditioning, pooled = compel("a photo of a doctor, looking at the camera, closeup headshot facing forward, ultra quality, sharp focus")
negative_conditioning, negative_pooled = compel(negative_prompt)
[conditioning, negative_conditioning] = compel.pad_conditioning_tensors_to_same_length([conditioning, negative_conditioning])
image = pipeline(prompt_embeds=conditioning, negative_prompt_embeds=negative_conditioning,
pooled_prompt_embeds=pooled, negative_pooled_prompt_embeds=negative_pooled,
num_inference_steps=40).images[0]
image.save('/../../x.jpg')
```
# Examples
| | | |
|:-------------------------:|:-------------------------:|:-------------------------:|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./116.jpg"> | <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./217.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./67.jpg">|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./122.jpg"> | <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./286.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./747.jpg">|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./147.jpg"> | <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./446.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./823.jpg">|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./175.jpg"> | <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./495.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./982.jpg">|
# Training data
NYUAD-ComNets/Asian_Male_Profession dataset was used to fine-tune stabilityai/stable-diffusion-xl-base-1.0
profession list =['pilot','doctor','nurse','pharmacist','dietitian','professor','teacher','mathematics scientist','computer engineer','programmer','tailor','cleaner',
'soldier','security guard','lawyer','manager','accountant','secretary','singer','journalist','youtuber','tiktoker','fashion model','chef','sushi chef']
# Configurations
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
# BibTeX entry and citation info
```
@article{aldahoul2024ai,
title={AI-generated faces free from racial and gender stereotypes},
author={AlDahoul, Nouar and Rahwan, Talal and Zaki, Yasir},
journal={arXiv preprint arXiv:2402.01002},
year={2024}
}
@misc{ComNets,
url={[https://huggingface.co/NYUAD-ComNets/Asian_Male_Profession_Model](https://huggingface.co/NYUAD-ComNets/Asian_Male_Profession_Model)},
title={Asian_Male_Profession_Model},
author={Nouar AlDahoul, Talal Rahwan, Yasir Zaki}
}
```
|