File size: 5,139 Bytes
cd81fc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "T4",
      "authorship_tag": "ABX9TyPXgKZqJoVuio+h58qyoujZ",
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/Erioldeth/Viet-Laos-Translator/blob/main/tokenizer_training.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "g6isgzoaxWTr",
        "outputId": "8ea96348-ea45-4d2e-e0a5-b76f3cfbb255"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Mounted at /content/drive\n"
          ]
        }
      ],
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install sentencepiece"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "2ZYK4GgzzSG4",
        "outputId": "be748680-ccff-45e0-d0b5-91f9a9887608"
      },
      "execution_count": 2,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting sentencepiece\n",
            "  Downloading sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m9.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hInstalling collected packages: sentencepiece\n",
            "Successfully installed sentencepiece-0.1.99\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import sentencepiece as spm"
      ],
      "metadata": {
        "id": "N3j11OrLzxFC"
      },
      "execution_count": 4,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "def train_sentencepiece_model(input_file, model_prefix, model_type='bpe', vocab_size=16000):\n",
        "    # Train SentencePiece model\n",
        "    spm.SentencePieceTrainer.train(\n",
        "        input=input_file,\n",
        "        model_prefix=model_prefix,\n",
        "        vocab_size=vocab_size,\n",
        "        model_type=model_type,\n",
        "        max_sentence_length=10000,\n",
        "        input_sentence_size=1000000,\n",
        "        split_by_whitespace=\"false\",\n",
        "    )"
      ],
      "metadata": {
        "id": "LITW3pSpz2Vp"
      },
      "execution_count": 10,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "train_sentencepiece_model('drive/MyDrive/vi.txt', 'tokenizer.vi_bpe')"
      ],
      "metadata": {
        "id": "DuMgFiV60C_K"
      },
      "execution_count": 11,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "def tokenize_text(text, model_path):\n",
        "    # Load trained model\n",
        "    sp = spm.SentencePieceProcessor()\n",
        "    sp.load(model_path)\n",
        "\n",
        "    # Tokenize Lao sentence\n",
        "    tokens = sp.encode(text, out_type=str)\n",
        "    return tokens"
      ],
      "metadata": {
        "id": "n3f4z8Ky6PcQ"
      },
      "execution_count": 7,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "sentence = \"Cuộc thi sáng tác truyện tranh đến từ Nhật Bản, dành cho các họa sĩ Việt Nam!\"\n",
        "model_path = 'tokenizer.vi_bpe.model'\n",
        "tokens = tokenize_text(sentence, model_path)\n",
        "print(\"Tokens:\", tokens)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Zyjy-JJgHxUm",
        "outputId": "e797ad00-0192-456a-963f-eed44274eae9"
      },
      "execution_count": 12,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Tokens: ['▁Cuộc▁thi', '▁sáng▁tác', '▁truyện', '▁tranh', '▁đến▁từ', '▁Nhật▁Bản', ',', '▁dành▁cho▁các', '▁họa▁sĩ', '▁Việt▁Nam', '!']\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "IN85a_AcHz2G"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}