File size: 59,896 Bytes
dde5d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import argparse
import functools
import gc
import itertools
import json
import logging
import math
import os
import random
import shutil
from contextlib import nullcontext
from pathlib import Path
from typing import List, Union

import accelerate
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import torchvision.transforms.functional as TF
import transformers
import webdataset as wds
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from braceexpand import braceexpand
from huggingface_hub import create_repo, upload_folder
from packaging import version
from torch.utils.data import default_collate
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, CLIPTextModel, PretrainedConfig
from webdataset.tariterators import (
    base_plus_ext,
    tar_file_expander,
    url_opener,
    valid_sample,
)

import diffusers
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    LCMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.training_utils import resolve_interpolation_mode
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available


MAX_SEQ_LENGTH = 77

if is_wandb_available():
    import wandb

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.31.0.dev0")

logger = get_logger(__name__)


def filter_keys(key_set):
    def _f(dictionary):
        return {k: v for k, v in dictionary.items() if k in key_set}

    return _f


def group_by_keys_nothrow(data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None):
    """Return function over iterator that groups key, value pairs into samples.

    :param keys: function that splits the key into key and extension (base_plus_ext) :param lcase: convert suffixes to
    lower case (Default value = True)
    """
    current_sample = None
    for filesample in data:
        assert isinstance(filesample, dict)
        fname, value = filesample["fname"], filesample["data"]
        prefix, suffix = keys(fname)
        if prefix is None:
            continue
        if lcase:
            suffix = suffix.lower()
        # FIXME webdataset version throws if suffix in current_sample, but we have a potential for
        #  this happening in the current LAION400m dataset if a tar ends with same prefix as the next
        #  begins, rare, but can happen since prefix aren't unique across tar files in that dataset
        if current_sample is None or prefix != current_sample["__key__"] or suffix in current_sample:
            if valid_sample(current_sample):
                yield current_sample
            current_sample = {"__key__": prefix, "__url__": filesample["__url__"]}
        if suffixes is None or suffix in suffixes:
            current_sample[suffix] = value
    if valid_sample(current_sample):
        yield current_sample


def tarfile_to_samples_nothrow(src, handler=wds.warn_and_continue):
    # NOTE this is a re-impl of the webdataset impl with group_by_keys that doesn't throw
    streams = url_opener(src, handler=handler)
    files = tar_file_expander(streams, handler=handler)
    samples = group_by_keys_nothrow(files, handler=handler)
    return samples


class WebdatasetFilter:
    def __init__(self, min_size=1024, max_pwatermark=0.5):
        self.min_size = min_size
        self.max_pwatermark = max_pwatermark

    def __call__(self, x):
        try:
            if "json" in x:
                x_json = json.loads(x["json"])
                filter_size = (x_json.get("original_width", 0.0) or 0.0) >= self.min_size and x_json.get(
                    "original_height", 0
                ) >= self.min_size
                filter_watermark = (x_json.get("pwatermark", 1.0) or 1.0) <= self.max_pwatermark
                return filter_size and filter_watermark
            else:
                return False
        except Exception:
            return False


class SDText2ImageDataset:
    def __init__(
        self,
        train_shards_path_or_url: Union[str, List[str]],
        num_train_examples: int,
        per_gpu_batch_size: int,
        global_batch_size: int,
        num_workers: int,
        resolution: int = 512,
        interpolation_type: str = "bilinear",
        shuffle_buffer_size: int = 1000,
        pin_memory: bool = False,
        persistent_workers: bool = False,
    ):
        if not isinstance(train_shards_path_or_url, str):
            train_shards_path_or_url = [list(braceexpand(urls)) for urls in train_shards_path_or_url]
            # flatten list using itertools
            train_shards_path_or_url = list(itertools.chain.from_iterable(train_shards_path_or_url))

        interpolation_mode = resolve_interpolation_mode(interpolation_type)

        def transform(example):
            # resize image
            image = example["image"]
            image = TF.resize(image, resolution, interpolation=interpolation_mode)

            # get crop coordinates and crop image
            c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(resolution, resolution))
            image = TF.crop(image, c_top, c_left, resolution, resolution)
            image = TF.to_tensor(image)
            image = TF.normalize(image, [0.5], [0.5])

            example["image"] = image
            return example

        processing_pipeline = [
            wds.decode("pil", handler=wds.ignore_and_continue),
            wds.rename(image="jpg;png;jpeg;webp", text="text;txt;caption", handler=wds.warn_and_continue),
            wds.map(filter_keys({"image", "text"})),
            wds.map(transform),
            wds.to_tuple("image", "text"),
        ]

        # Create train dataset and loader
        pipeline = [
            wds.ResampledShards(train_shards_path_or_url),
            tarfile_to_samples_nothrow,
            wds.shuffle(shuffle_buffer_size),
            *processing_pipeline,
            wds.batched(per_gpu_batch_size, partial=False, collation_fn=default_collate),
        ]

        num_worker_batches = math.ceil(num_train_examples / (global_batch_size * num_workers))  # per dataloader worker
        num_batches = num_worker_batches * num_workers
        num_samples = num_batches * global_batch_size

        # each worker is iterating over this
        self._train_dataset = wds.DataPipeline(*pipeline).with_epoch(num_worker_batches)
        self._train_dataloader = wds.WebLoader(
            self._train_dataset,
            batch_size=None,
            shuffle=False,
            num_workers=num_workers,
            pin_memory=pin_memory,
            persistent_workers=persistent_workers,
        )
        # add meta-data to dataloader instance for convenience
        self._train_dataloader.num_batches = num_batches
        self._train_dataloader.num_samples = num_samples

    @property
    def train_dataset(self):
        return self._train_dataset

    @property
    def train_dataloader(self):
        return self._train_dataloader


def log_validation(vae, unet, args, accelerator, weight_dtype, step, name="target"):
    logger.info("Running validation... ")

    unet = accelerator.unwrap_model(unet)
    pipeline = StableDiffusionPipeline.from_pretrained(
        args.pretrained_teacher_model,
        vae=vae,
        unet=unet,
        scheduler=LCMScheduler.from_pretrained(args.pretrained_teacher_model, subfolder="scheduler"),
        revision=args.revision,
        torch_dtype=weight_dtype,
    )
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

    if args.enable_xformers_memory_efficient_attention:
        pipeline.enable_xformers_memory_efficient_attention()

    if args.seed is None:
        generator = None
    else:
        generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)

    validation_prompts = [
        "portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography",
        "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
        "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
        "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
    ]

    image_logs = []

    for _, prompt in enumerate(validation_prompts):
        images = []
        if torch.backends.mps.is_available():
            autocast_ctx = nullcontext()
        else:
            autocast_ctx = torch.autocast(accelerator.device.type)

        with autocast_ctx:
            images = pipeline(
                prompt=prompt,
                num_inference_steps=4,
                num_images_per_prompt=4,
                generator=generator,
            ).images
        image_logs.append({"validation_prompt": prompt, "images": images})

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            for log in image_logs:
                images = log["images"]
                validation_prompt = log["validation_prompt"]
                formatted_images = []
                for image in images:
                    formatted_images.append(np.asarray(image))

                formatted_images = np.stack(formatted_images)

                tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC")
        elif tracker.name == "wandb":
            formatted_images = []

            for log in image_logs:
                images = log["images"]
                validation_prompt = log["validation_prompt"]
                for image in images:
                    image = wandb.Image(image, caption=validation_prompt)
                    formatted_images.append(image)

            tracker.log({f"validation/{name}": formatted_images})
        else:
            logger.warning(f"image logging not implemented for {tracker.name}")

        del pipeline
        gc.collect()
        torch.cuda.empty_cache()

        return image_logs


# From LatentConsistencyModel.get_guidance_scale_embedding
def guidance_scale_embedding(w, embedding_dim=512, dtype=torch.float32):
    """
    See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

    Args:
        timesteps (`torch.Tensor`):
            generate embedding vectors at these timesteps
        embedding_dim (`int`, *optional*, defaults to 512):
            dimension of the embeddings to generate
        dtype:
            data type of the generated embeddings

    Returns:
        `torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
    """
    assert len(w.shape) == 1
    w = w * 1000.0

    half_dim = embedding_dim // 2
    emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
    emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
    emb = w.to(dtype)[:, None] * emb[None, :]
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
    if embedding_dim % 2 == 1:  # zero pad
        emb = torch.nn.functional.pad(emb, (0, 1))
    assert emb.shape == (w.shape[0], embedding_dim)
    return emb


def append_dims(x, target_dims):
    """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
    dims_to_append = target_dims - x.ndim
    if dims_to_append < 0:
        raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
    return x[(...,) + (None,) * dims_to_append]


# From LCMScheduler.get_scalings_for_boundary_condition_discrete
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0):
    scaled_timestep = timestep_scaling * timestep
    c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
    c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
    return c_skip, c_out


# Compare LCMScheduler.step, Step 4
def get_predicted_original_sample(model_output, timesteps, sample, prediction_type, alphas, sigmas):
    alphas = extract_into_tensor(alphas, timesteps, sample.shape)
    sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
    if prediction_type == "epsilon":
        pred_x_0 = (sample - sigmas * model_output) / alphas
    elif prediction_type == "sample":
        pred_x_0 = model_output
    elif prediction_type == "v_prediction":
        pred_x_0 = alphas * sample - sigmas * model_output
    else:
        raise ValueError(
            f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`"
            f" are supported."
        )

    return pred_x_0


# Based on step 4 in DDIMScheduler.step
def get_predicted_noise(model_output, timesteps, sample, prediction_type, alphas, sigmas):
    alphas = extract_into_tensor(alphas, timesteps, sample.shape)
    sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
    if prediction_type == "epsilon":
        pred_epsilon = model_output
    elif prediction_type == "sample":
        pred_epsilon = (sample - alphas * model_output) / sigmas
    elif prediction_type == "v_prediction":
        pred_epsilon = alphas * model_output + sigmas * sample
    else:
        raise ValueError(
            f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`"
            f" are supported."
        )

    return pred_epsilon


def extract_into_tensor(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


class DDIMSolver:
    def __init__(self, alpha_cumprods, timesteps=1000, ddim_timesteps=50):
        # DDIM sampling parameters
        step_ratio = timesteps // ddim_timesteps
        self.ddim_timesteps = (np.arange(1, ddim_timesteps + 1) * step_ratio).round().astype(np.int64) - 1
        self.ddim_alpha_cumprods = alpha_cumprods[self.ddim_timesteps]
        self.ddim_alpha_cumprods_prev = np.asarray(
            [alpha_cumprods[0]] + alpha_cumprods[self.ddim_timesteps[:-1]].tolist()
        )
        # convert to torch tensors
        self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long()
        self.ddim_alpha_cumprods = torch.from_numpy(self.ddim_alpha_cumprods)
        self.ddim_alpha_cumprods_prev = torch.from_numpy(self.ddim_alpha_cumprods_prev)

    def to(self, device):
        self.ddim_timesteps = self.ddim_timesteps.to(device)
        self.ddim_alpha_cumprods = self.ddim_alpha_cumprods.to(device)
        self.ddim_alpha_cumprods_prev = self.ddim_alpha_cumprods_prev.to(device)
        return self

    def ddim_step(self, pred_x0, pred_noise, timestep_index):
        alpha_cumprod_prev = extract_into_tensor(self.ddim_alpha_cumprods_prev, timestep_index, pred_x0.shape)
        dir_xt = (1.0 - alpha_cumprod_prev).sqrt() * pred_noise
        x_prev = alpha_cumprod_prev.sqrt() * pred_x0 + dir_xt
        return x_prev


@torch.no_grad()
def update_ema(target_params, source_params, rate=0.99):
    """
    Update target parameters to be closer to those of source parameters using
    an exponential moving average.

    :param target_params: the target parameter sequence.
    :param source_params: the source parameter sequence.
    :param rate: the EMA rate (closer to 1 means slower).
    """
    for targ, src in zip(target_params, source_params):
        targ.detach().mul_(rate).add_(src, alpha=1 - rate)


def import_model_class_from_model_name_or_path(
    pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path, subfolder=subfolder, revision=revision
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "CLIPTextModelWithProjection":
        from transformers import CLIPTextModelWithProjection

        return CLIPTextModelWithProjection
    else:
        raise ValueError(f"{model_class} is not supported.")


def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    # ----------Model Checkpoint Loading Arguments----------
    parser.add_argument(
        "--pretrained_teacher_model",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained LDM teacher model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--pretrained_vae_model_name_or_path",
        type=str,
        default=None,
        help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
    )
    parser.add_argument(
        "--teacher_revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained LDM teacher model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained LDM model identifier from huggingface.co/models.",
    )
    # ----------Training Arguments----------
    # ----General Training Arguments----
    parser.add_argument(
        "--output_dir",
        type=str,
        default="lcm-xl-distilled",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    # ----Logging----
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    # ----Checkpointing----
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=None,
        help=("Max number of checkpoints to store."),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    # ----Image Processing----
    parser.add_argument(
        "--train_shards_path_or_url",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--interpolation_type",
        type=str,
        default="bilinear",
        help=(
            "The interpolation function used when resizing images to the desired resolution. Choose between `bilinear`,"
            " `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`."
        ),
    )
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
    parser.add_argument(
        "--random_flip",
        action="store_true",
        help="whether to randomly flip images horizontally",
    )
    # ----Dataloader----
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
    # ----Batch Size and Training Steps----
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--max_train_samples",
        type=int,
        default=None,
        help=(
            "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        ),
    )
    # ----Learning Rate----
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    # ----Optimizer (Adam)----
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    # ----Diffusion Training Arguments----
    parser.add_argument(
        "--proportion_empty_prompts",
        type=float,
        default=0,
        help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
    )
    # ----Latent Consistency Distillation (LCD) Specific Arguments----
    parser.add_argument(
        "--w_min",
        type=float,
        default=5.0,
        required=False,
        help=(
            "The minimum guidance scale value for guidance scale sampling. Note that we are using the Imagen CFG"
            " formulation rather than the LCM formulation, which means all guidance scales have 1 added to them as"
            " compared to the original paper."
        ),
    )
    parser.add_argument(
        "--w_max",
        type=float,
        default=15.0,
        required=False,
        help=(
            "The maximum guidance scale value for guidance scale sampling. Note that we are using the Imagen CFG"
            " formulation rather than the LCM formulation, which means all guidance scales have 1 added to them as"
            " compared to the original paper."
        ),
    )
    parser.add_argument(
        "--num_ddim_timesteps",
        type=int,
        default=50,
        help="The number of timesteps to use for DDIM sampling.",
    )
    parser.add_argument(
        "--loss_type",
        type=str,
        default="l2",
        choices=["l2", "huber"],
        help="The type of loss to use for the LCD loss.",
    )
    parser.add_argument(
        "--huber_c",
        type=float,
        default=0.001,
        help="The huber loss parameter. Only used if `--loss_type=huber`.",
    )
    parser.add_argument(
        "--unet_time_cond_proj_dim",
        type=int,
        default=256,
        help=(
            "The dimension of the guidance scale embedding in the U-Net, which will be used if the teacher U-Net"
            " does not have `time_cond_proj_dim` set."
        ),
    )
    parser.add_argument(
        "--vae_encode_batch_size",
        type=int,
        default=32,
        required=False,
        help=(
            "The batch size used when encoding (and decoding) images to latents (and vice versa) using the VAE."
            " Encoding or decoding the whole batch at once may run into OOM issues."
        ),
    )
    parser.add_argument(
        "--timestep_scaling_factor",
        type=float,
        default=10.0,
        help=(
            "The multiplicative timestep scaling factor used when calculating the boundary scalings for LCM. The"
            " higher the scaling is, the lower the approximation error, but the default value of 10.0 should typically"
            " suffice."
        ),
    )
    # ----Exponential Moving Average (EMA)----
    parser.add_argument(
        "--ema_decay",
        type=float,
        default=0.95,
        required=False,
        help="The exponential moving average (EMA) rate or decay factor.",
    )
    # ----Mixed Precision----
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--cast_teacher_unet",
        action="store_true",
        help="Whether to cast the teacher U-Net to the precision specified by `--mixed_precision`.",
    )
    # ----Training Optimizations----
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    # ----Distributed Training----
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    # ----------Validation Arguments----------
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=200,
        help="Run validation every X steps.",
    )
    # ----------Huggingface Hub Arguments-----------
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    # ----------Accelerate Arguments----------
    parser.add_argument(
        "--tracker_project_name",
        type=str,
        default="text2image-fine-tune",
        help=(
            "The `project_name` argument passed to Accelerator.init_trackers for"
            " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
        ),
    )

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1:
        raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].")

    return args


# Adapted from pipelines.StableDiffusionPipeline.encode_prompt
def encode_prompt(prompt_batch, text_encoder, tokenizer, proportion_empty_prompts, is_train=True):
    captions = []
    for caption in prompt_batch:
        if random.random() < proportion_empty_prompts:
            captions.append("")
        elif isinstance(caption, str):
            captions.append(caption)
        elif isinstance(caption, (list, np.ndarray)):
            # take a random caption if there are multiple
            captions.append(random.choice(caption) if is_train else caption[0])

    with torch.no_grad():
        text_inputs = tokenizer(
            captions,
            padding="max_length",
            max_length=tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        prompt_embeds = text_encoder(text_input_ids.to(text_encoder.device))[0]

    return prompt_embeds


def main(args):
    if args.report_to == "wandb" and args.hub_token is not None:
        raise ValueError(
            "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
            " Please use `huggingface-cli login` to authenticate with the Hub."
        )

    logging_dir = Path(args.output_dir, args.logging_dir)

    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_config=accelerator_project_config,
        split_batches=True,  # It's important to set this to True when using webdataset to get the right number of steps for lr scheduling. If set to False, the number of steps will be devide by the number of processes assuming batches are multiplied by the number of processes
    )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name,
                exist_ok=True,
                token=args.hub_token,
                private=True,
            ).repo_id

    # 1. Create the noise scheduler and the desired noise schedule.
    noise_scheduler = DDPMScheduler.from_pretrained(
        args.pretrained_teacher_model, subfolder="scheduler", revision=args.teacher_revision
    )

    # DDPMScheduler calculates the alpha and sigma noise schedules (based on the alpha bars) for us
    alpha_schedule = torch.sqrt(noise_scheduler.alphas_cumprod)
    sigma_schedule = torch.sqrt(1 - noise_scheduler.alphas_cumprod)
    # Initialize the DDIM ODE solver for distillation.
    solver = DDIMSolver(
        noise_scheduler.alphas_cumprod.numpy(),
        timesteps=noise_scheduler.config.num_train_timesteps,
        ddim_timesteps=args.num_ddim_timesteps,
    )

    # 2. Load tokenizers from SD 1.X/2.X checkpoint.
    tokenizer = AutoTokenizer.from_pretrained(
        args.pretrained_teacher_model, subfolder="tokenizer", revision=args.teacher_revision, use_fast=False
    )

    # 3. Load text encoders from SD 1.X/2.X checkpoint.
    # import correct text encoder classes
    text_encoder = CLIPTextModel.from_pretrained(
        args.pretrained_teacher_model, subfolder="text_encoder", revision=args.teacher_revision
    )

    # 4. Load VAE from SD 1.X/2.X checkpoint
    vae = AutoencoderKL.from_pretrained(
        args.pretrained_teacher_model,
        subfolder="vae",
        revision=args.teacher_revision,
    )

    # 5. Load teacher U-Net from SD 1.X/2.X checkpoint
    teacher_unet = UNet2DConditionModel.from_pretrained(
        args.pretrained_teacher_model, subfolder="unet", revision=args.teacher_revision
    )

    # 6. Freeze teacher vae, text_encoder, and teacher_unet
    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)
    teacher_unet.requires_grad_(False)

    # 7. Create online student U-Net. This will be updated by the optimizer (e.g. via backpropagation.)
    # Add `time_cond_proj_dim` to the student U-Net if `teacher_unet.config.time_cond_proj_dim` is None
    time_cond_proj_dim = (
        teacher_unet.config.time_cond_proj_dim
        if teacher_unet.config.time_cond_proj_dim is not None
        else args.unet_time_cond_proj_dim
    )
    unet = UNet2DConditionModel.from_config(teacher_unet.config, time_cond_proj_dim=time_cond_proj_dim)
    # load teacher_unet weights into unet
    unet.load_state_dict(teacher_unet.state_dict(), strict=False)
    unet.train()

    # 8. Create target student U-Net. This will be updated via EMA updates (polyak averaging).
    # Initialize from (online) unet
    target_unet = UNet2DConditionModel.from_config(unet.config)
    target_unet.load_state_dict(unet.state_dict())
    target_unet.train()
    target_unet.requires_grad_(False)

    # Check that all trainable models are in full precision
    low_precision_error_string = (
        " Please make sure to always have all model weights in full float32 precision when starting training - even if"
        " doing mixed precision training, copy of the weights should still be float32."
    )

    if accelerator.unwrap_model(unet).dtype != torch.float32:
        raise ValueError(
            f"Controlnet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}"
        )

    # 9. Handle mixed precision and device placement
    # For mixed precision training we cast all non-trainable weigths to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move unet, vae and text_encoder to device and cast to weight_dtype
    # The VAE is in float32 to avoid NaN losses.
    vae.to(accelerator.device)
    if args.pretrained_vae_model_name_or_path is not None:
        vae.to(dtype=weight_dtype)
    text_encoder.to(accelerator.device, dtype=weight_dtype)

    # Move teacher_unet to device, optionally cast to weight_dtype
    target_unet.to(accelerator.device)
    teacher_unet.to(accelerator.device)
    if args.cast_teacher_unet:
        teacher_unet.to(dtype=weight_dtype)

    # Also move the alpha and sigma noise schedules to accelerator.device.
    alpha_schedule = alpha_schedule.to(accelerator.device)
    sigma_schedule = sigma_schedule.to(accelerator.device)
    solver = solver.to(accelerator.device)

    # 10. Handle saving and loading of checkpoints
    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
            if accelerator.is_main_process:
                target_unet.save_pretrained(os.path.join(output_dir, "unet_target"))

                for i, model in enumerate(models):
                    model.save_pretrained(os.path.join(output_dir, "unet"))

                    # make sure to pop weight so that corresponding model is not saved again
                    weights.pop()

        def load_model_hook(models, input_dir):
            load_model = UNet2DConditionModel.from_pretrained(os.path.join(input_dir, "unet_target"))
            target_unet.load_state_dict(load_model.state_dict())
            target_unet.to(accelerator.device)
            del load_model

            for i in range(len(models)):
                # pop models so that they are not loaded again
                model = models.pop()

                # load diffusers style into model
                load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

    # 11. Enable optimizations
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warning(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            unet.enable_xformers_memory_efficient_attention()
            teacher_unet.enable_xformers_memory_efficient_attention()
            target_unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

    # 12. Optimizer creation
    optimizer = optimizer_class(
        unet.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

    # 13. Dataset creation and data processing
    # Here, we compute not just the text embeddings but also the additional embeddings
    # needed for the SD XL UNet to operate.
    def compute_embeddings(prompt_batch, proportion_empty_prompts, text_encoder, tokenizer, is_train=True):
        prompt_embeds = encode_prompt(prompt_batch, text_encoder, tokenizer, proportion_empty_prompts, is_train)
        return {"prompt_embeds": prompt_embeds}

    dataset = SDText2ImageDataset(
        train_shards_path_or_url=args.train_shards_path_or_url,
        num_train_examples=args.max_train_samples,
        per_gpu_batch_size=args.train_batch_size,
        global_batch_size=args.train_batch_size * accelerator.num_processes,
        num_workers=args.dataloader_num_workers,
        resolution=args.resolution,
        interpolation_type=args.interpolation_type,
        shuffle_buffer_size=1000,
        pin_memory=True,
        persistent_workers=True,
    )
    train_dataloader = dataset.train_dataloader

    compute_embeddings_fn = functools.partial(
        compute_embeddings,
        proportion_empty_prompts=0,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
    )

    # 14. LR Scheduler creation
    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # 15. Prepare for training
    # Prepare everything with our `accelerator`.
    unet, optimizer, lr_scheduler = accelerator.prepare(unet, optimizer, lr_scheduler)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        tracker_config = dict(vars(args))
        accelerator.init_trackers(args.tracker_project_name, config=tracker_config)

    uncond_input_ids = tokenizer(
        [""] * args.train_batch_size, return_tensors="pt", padding="max_length", max_length=77
    ).input_ids.to(accelerator.device)
    uncond_prompt_embeds = text_encoder(uncond_input_ids)[0]

    # 16. Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num batches each epoch = {train_dataloader.num_batches}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
            initial_global_step = 0
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            initial_global_step = global_step
            first_epoch = global_step // num_update_steps_per_epoch
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )

    for epoch in range(first_epoch, args.num_train_epochs):
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(unet):
                # 1. Load and process the image and text conditioning
                image, text = batch

                image = image.to(accelerator.device, non_blocking=True)
                encoded_text = compute_embeddings_fn(text)

                pixel_values = image.to(dtype=weight_dtype)
                if vae.dtype != weight_dtype:
                    vae.to(dtype=weight_dtype)

                # encode pixel values with batch size of at most args.vae_encode_batch_size
                latents = []
                for i in range(0, pixel_values.shape[0], args.vae_encode_batch_size):
                    latents.append(vae.encode(pixel_values[i : i + args.vae_encode_batch_size]).latent_dist.sample())
                latents = torch.cat(latents, dim=0)

                latents = latents * vae.config.scaling_factor
                latents = latents.to(weight_dtype)
                bsz = latents.shape[0]

                # 2. Sample a random timestep for each image t_n from the ODE solver timesteps without bias.
                # For the DDIM solver, the timestep schedule is [T - 1, T - k - 1, T - 2 * k - 1, ...]
                topk = noise_scheduler.config.num_train_timesteps // args.num_ddim_timesteps
                index = torch.randint(0, args.num_ddim_timesteps, (bsz,), device=latents.device).long()
                start_timesteps = solver.ddim_timesteps[index]
                timesteps = start_timesteps - topk
                timesteps = torch.where(timesteps < 0, torch.zeros_like(timesteps), timesteps)

                # 3. Get boundary scalings for start_timesteps and (end) timesteps.
                c_skip_start, c_out_start = scalings_for_boundary_conditions(
                    start_timesteps, timestep_scaling=args.timestep_scaling_factor
                )
                c_skip_start, c_out_start = [append_dims(x, latents.ndim) for x in [c_skip_start, c_out_start]]
                c_skip, c_out = scalings_for_boundary_conditions(
                    timesteps, timestep_scaling=args.timestep_scaling_factor
                )
                c_skip, c_out = [append_dims(x, latents.ndim) for x in [c_skip, c_out]]

                # 4. Sample noise from the prior and add it to the latents according to the noise magnitude at each
                # timestep (this is the forward diffusion process) [z_{t_{n + k}} in Algorithm 1]
                noise = torch.randn_like(latents)
                noisy_model_input = noise_scheduler.add_noise(latents, noise, start_timesteps)

                # 5. Sample a random guidance scale w from U[w_min, w_max] and embed it
                w = (args.w_max - args.w_min) * torch.rand((bsz,)) + args.w_min
                w_embedding = guidance_scale_embedding(w, embedding_dim=time_cond_proj_dim)
                w = w.reshape(bsz, 1, 1, 1)
                # Move to U-Net device and dtype
                w = w.to(device=latents.device, dtype=latents.dtype)
                w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype)

                # 6. Prepare prompt embeds and unet_added_conditions
                prompt_embeds = encoded_text.pop("prompt_embeds")

                # 7. Get online LCM prediction on z_{t_{n + k}} (noisy_model_input), w, c, t_{n + k} (start_timesteps)
                noise_pred = unet(
                    noisy_model_input,
                    start_timesteps,
                    timestep_cond=w_embedding,
                    encoder_hidden_states=prompt_embeds.float(),
                    added_cond_kwargs=encoded_text,
                ).sample

                pred_x_0 = get_predicted_original_sample(
                    noise_pred,
                    start_timesteps,
                    noisy_model_input,
                    noise_scheduler.config.prediction_type,
                    alpha_schedule,
                    sigma_schedule,
                )

                model_pred = c_skip_start * noisy_model_input + c_out_start * pred_x_0

                # 8. Compute the conditional and unconditional teacher model predictions to get CFG estimates of the
                # predicted noise eps_0 and predicted original sample x_0, then run the ODE solver using these
                # estimates to predict the data point in the augmented PF-ODE trajectory corresponding to the next ODE
                # solver timestep.
                with torch.no_grad():
                    if torch.backends.mps.is_available():
                        autocast_ctx = nullcontext()
                    else:
                        autocast_ctx = torch.autocast(accelerator.device.type)

                    with autocast_ctx:
                        # 1. Get teacher model prediction on noisy_model_input z_{t_{n + k}} and conditional embedding c
                        cond_teacher_output = teacher_unet(
                            noisy_model_input.to(weight_dtype),
                            start_timesteps,
                            encoder_hidden_states=prompt_embeds.to(weight_dtype),
                        ).sample
                        cond_pred_x0 = get_predicted_original_sample(
                            cond_teacher_output,
                            start_timesteps,
                            noisy_model_input,
                            noise_scheduler.config.prediction_type,
                            alpha_schedule,
                            sigma_schedule,
                        )
                        cond_pred_noise = get_predicted_noise(
                            cond_teacher_output,
                            start_timesteps,
                            noisy_model_input,
                            noise_scheduler.config.prediction_type,
                            alpha_schedule,
                            sigma_schedule,
                        )

                        # 2. Get teacher model prediction on noisy_model_input z_{t_{n + k}} and unconditional embedding 0
                        uncond_teacher_output = teacher_unet(
                            noisy_model_input.to(weight_dtype),
                            start_timesteps,
                            encoder_hidden_states=uncond_prompt_embeds.to(weight_dtype),
                        ).sample
                        uncond_pred_x0 = get_predicted_original_sample(
                            uncond_teacher_output,
                            start_timesteps,
                            noisy_model_input,
                            noise_scheduler.config.prediction_type,
                            alpha_schedule,
                            sigma_schedule,
                        )
                        uncond_pred_noise = get_predicted_noise(
                            uncond_teacher_output,
                            start_timesteps,
                            noisy_model_input,
                            noise_scheduler.config.prediction_type,
                            alpha_schedule,
                            sigma_schedule,
                        )

                        # 3. Calculate the CFG estimate of x_0 (pred_x0) and eps_0 (pred_noise)
                        # Note that this uses the LCM paper's CFG formulation rather than the Imagen CFG formulation
                        pred_x0 = cond_pred_x0 + w * (cond_pred_x0 - uncond_pred_x0)
                        pred_noise = cond_pred_noise + w * (cond_pred_noise - uncond_pred_noise)
                        # 4. Run one step of the ODE solver to estimate the next point x_prev on the
                        # augmented PF-ODE trajectory (solving backward in time)
                        # Note that the DDIM step depends on both the predicted x_0 and source noise eps_0.
                        x_prev = solver.ddim_step(pred_x0, pred_noise, index)

                # 9. Get target LCM prediction on x_prev, w, c, t_n (timesteps)
                with torch.no_grad():
                    if torch.backends.mps.is_available():
                        autocast_ctx = nullcontext()
                    else:
                        autocast_ctx = torch.autocast(accelerator.device.type, dtype=weight_dtype)

                    with autocast_ctx:
                        target_noise_pred = target_unet(
                            x_prev.float(),
                            timesteps,
                            timestep_cond=w_embedding,
                            encoder_hidden_states=prompt_embeds.float(),
                        ).sample
                    pred_x_0 = get_predicted_original_sample(
                        target_noise_pred,
                        timesteps,
                        x_prev,
                        noise_scheduler.config.prediction_type,
                        alpha_schedule,
                        sigma_schedule,
                    )
                    target = c_skip * x_prev + c_out * pred_x_0

                # 10. Calculate loss
                if args.loss_type == "l2":
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
                elif args.loss_type == "huber":
                    loss = torch.mean(
                        torch.sqrt((model_pred.float() - target.float()) ** 2 + args.huber_c**2) - args.huber_c
                    )

                # 11. Backpropagate on the online student model (`unet`)
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad(set_to_none=True)

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                # 12. Make EMA update to target student model parameters (`target_unet`)
                update_ema(target_unet.parameters(), unet.parameters(), args.ema_decay)
                progress_bar.update(1)
                global_step += 1

                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

                    if global_step % args.validation_steps == 0:
                        log_validation(vae, target_unet, args, accelerator, weight_dtype, global_step, "target")
                        log_validation(vae, unet, args, accelerator, weight_dtype, global_step, "online")

            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

    # Create the pipeline using using the trained modules and save it.
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        unet = accelerator.unwrap_model(unet)
        unet.save_pretrained(os.path.join(args.output_dir, "unet"))

        target_unet = accelerator.unwrap_model(target_unet)
        target_unet.save_pretrained(os.path.join(args.output_dir, "unet_target"))

        if args.push_to_hub:
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )

    accelerator.end_training()


if __name__ == "__main__":
    args = parse_args()
    main(args)