File size: 10,424 Bytes
dde5d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
#!/usr/bin/env python3
import argparse
import math
import os
from copy import deepcopy

import requests
import torch
from audio_diffusion.models import DiffusionAttnUnet1D
from diffusion import sampling
from torch import nn

from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNet1DModel


MODELS_MAP = {
    "gwf-440k": {
        "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt",
        "sample_rate": 48000,
        "sample_size": 65536,
    },
    "jmann-small-190k": {
        "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt",
        "sample_rate": 48000,
        "sample_size": 65536,
    },
    "jmann-large-580k": {
        "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt",
        "sample_rate": 48000,
        "sample_size": 131072,
    },
    "maestro-uncond-150k": {
        "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt",
        "sample_rate": 16000,
        "sample_size": 65536,
    },
    "unlocked-uncond-250k": {
        "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt",
        "sample_rate": 16000,
        "sample_size": 65536,
    },
    "honk-140k": {
        "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt",
        "sample_rate": 16000,
        "sample_size": 65536,
    },
}


def alpha_sigma_to_t(alpha, sigma):
    """Returns a timestep, given the scaling factors for the clean image and for
    the noise."""
    return torch.atan2(sigma, alpha) / math.pi * 2


def get_crash_schedule(t):
    sigma = torch.sin(t * math.pi / 2) ** 2
    alpha = (1 - sigma**2) ** 0.5
    return alpha_sigma_to_t(alpha, sigma)


class Object(object):
    pass


class DiffusionUncond(nn.Module):
    def __init__(self, global_args):
        super().__init__()

        self.diffusion = DiffusionAttnUnet1D(global_args, n_attn_layers=4)
        self.diffusion_ema = deepcopy(self.diffusion)
        self.rng = torch.quasirandom.SobolEngine(1, scramble=True)


def download(model_name):
    url = MODELS_MAP[model_name]["url"]
    r = requests.get(url, stream=True)

    local_filename = f"./{model_name}.ckpt"
    with open(local_filename, "wb") as fp:
        for chunk in r.iter_content(chunk_size=8192):
            fp.write(chunk)

    return local_filename


DOWN_NUM_TO_LAYER = {
    "1": "resnets.0",
    "2": "attentions.0",
    "3": "resnets.1",
    "4": "attentions.1",
    "5": "resnets.2",
    "6": "attentions.2",
}
UP_NUM_TO_LAYER = {
    "8": "resnets.0",
    "9": "attentions.0",
    "10": "resnets.1",
    "11": "attentions.1",
    "12": "resnets.2",
    "13": "attentions.2",
}
MID_NUM_TO_LAYER = {
    "1": "resnets.0",
    "2": "attentions.0",
    "3": "resnets.1",
    "4": "attentions.1",
    "5": "resnets.2",
    "6": "attentions.2",
    "8": "resnets.3",
    "9": "attentions.3",
    "10": "resnets.4",
    "11": "attentions.4",
    "12": "resnets.5",
    "13": "attentions.5",
}
DEPTH_0_TO_LAYER = {
    "0": "resnets.0",
    "1": "resnets.1",
    "2": "resnets.2",
    "4": "resnets.0",
    "5": "resnets.1",
    "6": "resnets.2",
}

RES_CONV_MAP = {
    "skip": "conv_skip",
    "main.0": "conv_1",
    "main.1": "group_norm_1",
    "main.3": "conv_2",
    "main.4": "group_norm_2",
}

ATTN_MAP = {
    "norm": "group_norm",
    "qkv_proj": ["query", "key", "value"],
    "out_proj": ["proj_attn"],
}


def convert_resconv_naming(name):
    if name.startswith("skip"):
        return name.replace("skip", RES_CONV_MAP["skip"])

    # name has to be of format main.{digit}
    if not name.startswith("main."):
        raise ValueError(f"ResConvBlock error with {name}")

    return name.replace(name[:6], RES_CONV_MAP[name[:6]])


def convert_attn_naming(name):
    for key, value in ATTN_MAP.items():
        if name.startswith(key) and not isinstance(value, list):
            return name.replace(key, value)
        elif name.startswith(key):
            return [name.replace(key, v) for v in value]
    raise ValueError(f"Attn error with {name}")


def rename(input_string, max_depth=13):
    string = input_string

    if string.split(".")[0] == "timestep_embed":
        return string.replace("timestep_embed", "time_proj")

    depth = 0
    if string.startswith("net.3."):
        depth += 1
        string = string[6:]
    elif string.startswith("net."):
        string = string[4:]

    while string.startswith("main.7."):
        depth += 1
        string = string[7:]

    if string.startswith("main."):
        string = string[5:]

    # mid block
    if string[:2].isdigit():
        layer_num = string[:2]
        string_left = string[2:]
    else:
        layer_num = string[0]
        string_left = string[1:]

    if depth == max_depth:
        new_layer = MID_NUM_TO_LAYER[layer_num]
        prefix = "mid_block"
    elif depth > 0 and int(layer_num) < 7:
        new_layer = DOWN_NUM_TO_LAYER[layer_num]
        prefix = f"down_blocks.{depth}"
    elif depth > 0 and int(layer_num) > 7:
        new_layer = UP_NUM_TO_LAYER[layer_num]
        prefix = f"up_blocks.{max_depth - depth - 1}"
    elif depth == 0:
        new_layer = DEPTH_0_TO_LAYER[layer_num]
        prefix = f"up_blocks.{max_depth - 1}" if int(layer_num) > 3 else "down_blocks.0"

    if not string_left.startswith("."):
        raise ValueError(f"Naming error with {input_string} and string_left: {string_left}.")

    string_left = string_left[1:]

    if "resnets" in new_layer:
        string_left = convert_resconv_naming(string_left)
    elif "attentions" in new_layer:
        new_string_left = convert_attn_naming(string_left)
        string_left = new_string_left

    if not isinstance(string_left, list):
        new_string = prefix + "." + new_layer + "." + string_left
    else:
        new_string = [prefix + "." + new_layer + "." + s for s in string_left]
    return new_string


def rename_orig_weights(state_dict):
    new_state_dict = {}
    for k, v in state_dict.items():
        if k.endswith("kernel"):
            # up- and downsample layers, don't have trainable weights
            continue

        new_k = rename(k)

        # check if we need to transform from Conv => Linear for attention
        if isinstance(new_k, list):
            new_state_dict = transform_conv_attns(new_state_dict, new_k, v)
        else:
            new_state_dict[new_k] = v

    return new_state_dict


def transform_conv_attns(new_state_dict, new_k, v):
    if len(new_k) == 1:
        if len(v.shape) == 3:
            # weight
            new_state_dict[new_k[0]] = v[:, :, 0]
        else:
            # bias
            new_state_dict[new_k[0]] = v
    else:
        # qkv matrices
        trippled_shape = v.shape[0]
        single_shape = trippled_shape // 3
        for i in range(3):
            if len(v.shape) == 3:
                new_state_dict[new_k[i]] = v[i * single_shape : (i + 1) * single_shape, :, 0]
            else:
                new_state_dict[new_k[i]] = v[i * single_shape : (i + 1) * single_shape]
    return new_state_dict


def main(args):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    model_name = args.model_path.split("/")[-1].split(".")[0]
    if not os.path.isfile(args.model_path):
        assert (
            model_name == args.model_path
        ), f"Make sure to provide one of the official model names {MODELS_MAP.keys()}"
        args.model_path = download(model_name)

    sample_rate = MODELS_MAP[model_name]["sample_rate"]
    sample_size = MODELS_MAP[model_name]["sample_size"]

    config = Object()
    config.sample_size = sample_size
    config.sample_rate = sample_rate
    config.latent_dim = 0

    diffusers_model = UNet1DModel(sample_size=sample_size, sample_rate=sample_rate)
    diffusers_state_dict = diffusers_model.state_dict()

    orig_model = DiffusionUncond(config)
    orig_model.load_state_dict(torch.load(args.model_path, map_location=device)["state_dict"])
    orig_model = orig_model.diffusion_ema.eval()
    orig_model_state_dict = orig_model.state_dict()
    renamed_state_dict = rename_orig_weights(orig_model_state_dict)

    renamed_minus_diffusers = set(renamed_state_dict.keys()) - set(diffusers_state_dict.keys())
    diffusers_minus_renamed = set(diffusers_state_dict.keys()) - set(renamed_state_dict.keys())

    assert len(renamed_minus_diffusers) == 0, f"Problem with {renamed_minus_diffusers}"
    assert all(k.endswith("kernel") for k in list(diffusers_minus_renamed)), f"Problem with {diffusers_minus_renamed}"

    for key, value in renamed_state_dict.items():
        assert (
            diffusers_state_dict[key].squeeze().shape == value.squeeze().shape
        ), f"Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}"
        if key == "time_proj.weight":
            value = value.squeeze()

        diffusers_state_dict[key] = value

    diffusers_model.load_state_dict(diffusers_state_dict)

    steps = 100
    seed = 33

    diffusers_scheduler = IPNDMScheduler(num_train_timesteps=steps)

    generator = torch.manual_seed(seed)
    noise = torch.randn([1, 2, config.sample_size], generator=generator).to(device)

    t = torch.linspace(1, 0, steps + 1, device=device)[:-1]
    step_list = get_crash_schedule(t)

    pipe = DanceDiffusionPipeline(unet=diffusers_model, scheduler=diffusers_scheduler)

    generator = torch.manual_seed(33)
    audio = pipe(num_inference_steps=steps, generator=generator).audios

    generated = sampling.iplms_sample(orig_model, noise, step_list, {})
    generated = generated.clamp(-1, 1)

    diff_sum = (generated - audio).abs().sum()
    diff_max = (generated - audio).abs().max()

    if args.save:
        pipe.save_pretrained(args.checkpoint_path)

    print("Diff sum", diff_sum)
    print("Diff max", diff_max)

    assert diff_max < 1e-3, f"Diff max: {diff_max} is too much :-/"

    print(f"Conversion for {model_name} successful!")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.")
    parser.add_argument(
        "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not."
    )
    parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
    args = parser.parse_args()

    main(args)