File size: 18,727 Bytes
dde5d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import argparse
import json

import torch

from diffusers import AutoencoderKL, DDPMPipeline, DDPMScheduler, UNet2DModel, VQModel


def shave_segments(path, n_shave_prefix_segments=1):
    """
    Removes segments. Positive values shave the first segments, negative shave the last segments.
    """
    if n_shave_prefix_segments >= 0:
        return ".".join(path.split(".")[n_shave_prefix_segments:])
    else:
        return ".".join(path.split(".")[:n_shave_prefix_segments])


def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
    mapping = []
    for old_item in old_list:
        new_item = old_item
        new_item = new_item.replace("block.", "resnets.")
        new_item = new_item.replace("conv_shorcut", "conv1")
        new_item = new_item.replace("in_shortcut", "conv_shortcut")
        new_item = new_item.replace("temb_proj", "time_emb_proj")

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def renew_attention_paths(old_list, n_shave_prefix_segments=0, in_mid=False):
    mapping = []
    for old_item in old_list:
        new_item = old_item

        # In `model.mid`, the layer is called `attn`.
        if not in_mid:
            new_item = new_item.replace("attn", "attentions")
        new_item = new_item.replace(".k.", ".key.")
        new_item = new_item.replace(".v.", ".value.")
        new_item = new_item.replace(".q.", ".query.")

        new_item = new_item.replace("proj_out", "proj_attn")
        new_item = new_item.replace("norm", "group_norm")

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
        mapping.append({"old": old_item, "new": new_item})

    return mapping


def assign_to_checkpoint(
    paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
    assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."

    if attention_paths_to_split is not None:
        if config is None:
            raise ValueError("Please specify the config if setting 'attention_paths_to_split' to 'True'.")

        for path, path_map in attention_paths_to_split.items():
            old_tensor = old_checkpoint[path]
            channels = old_tensor.shape[0] // 3

            target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)

            num_heads = old_tensor.shape[0] // config.get("num_head_channels", 1) // 3

            old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
            query, key, value = old_tensor.split(channels // num_heads, dim=1)

            checkpoint[path_map["query"]] = query.reshape(target_shape).squeeze()
            checkpoint[path_map["key"]] = key.reshape(target_shape).squeeze()
            checkpoint[path_map["value"]] = value.reshape(target_shape).squeeze()

    for path in paths:
        new_path = path["new"]

        if attention_paths_to_split is not None and new_path in attention_paths_to_split:
            continue

        new_path = new_path.replace("down.", "down_blocks.")
        new_path = new_path.replace("up.", "up_blocks.")

        if additional_replacements is not None:
            for replacement in additional_replacements:
                new_path = new_path.replace(replacement["old"], replacement["new"])

        if "attentions" in new_path:
            checkpoint[new_path] = old_checkpoint[path["old"]].squeeze()
        else:
            checkpoint[new_path] = old_checkpoint[path["old"]]


def convert_ddpm_checkpoint(checkpoint, config):
    """
    Takes a state dict and a config, and returns a converted checkpoint.
    """
    new_checkpoint = {}

    new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["temb.dense.0.weight"]
    new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["temb.dense.0.bias"]
    new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["temb.dense.1.weight"]
    new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["temb.dense.1.bias"]

    new_checkpoint["conv_norm_out.weight"] = checkpoint["norm_out.weight"]
    new_checkpoint["conv_norm_out.bias"] = checkpoint["norm_out.bias"]

    new_checkpoint["conv_in.weight"] = checkpoint["conv_in.weight"]
    new_checkpoint["conv_in.bias"] = checkpoint["conv_in.bias"]
    new_checkpoint["conv_out.weight"] = checkpoint["conv_out.weight"]
    new_checkpoint["conv_out.bias"] = checkpoint["conv_out.bias"]

    num_down_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "down" in layer})
    down_blocks = {
        layer_id: [key for key in checkpoint if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
    }

    num_up_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "up" in layer})
    up_blocks = {layer_id: [key for key in checkpoint if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)}

    for i in range(num_down_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)

        if any("downsample" in layer for layer in down_blocks[i]):
            new_checkpoint[f"down_blocks.{i}.downsamplers.0.conv.weight"] = checkpoint[
                f"down.{i}.downsample.op.weight"
            ]
            new_checkpoint[f"down_blocks.{i}.downsamplers.0.conv.bias"] = checkpoint[f"down.{i}.downsample.op.bias"]
        #            new_checkpoint[f'down_blocks.{i}.downsamplers.0.op.weight'] = checkpoint[f'down.{i}.downsample.conv.weight']
        #            new_checkpoint[f'down_blocks.{i}.downsamplers.0.op.bias'] = checkpoint[f'down.{i}.downsample.conv.bias']

        if any("block" in layer for layer in down_blocks[i]):
            num_blocks = len(
                {".".join(shave_segments(layer, 2).split(".")[:2]) for layer in down_blocks[i] if "block" in layer}
            )
            blocks = {
                layer_id: [key for key in down_blocks[i] if f"block.{layer_id}" in key]
                for layer_id in range(num_blocks)
            }

            if num_blocks > 0:
                for j in range(config["layers_per_block"]):
                    paths = renew_resnet_paths(blocks[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint)

        if any("attn" in layer for layer in down_blocks[i]):
            num_attn = len(
                {".".join(shave_segments(layer, 2).split(".")[:2]) for layer in down_blocks[i] if "attn" in layer}
            )
            attns = {
                layer_id: [key for key in down_blocks[i] if f"attn.{layer_id}" in key]
                for layer_id in range(num_blocks)
            }

            if num_attn > 0:
                for j in range(config["layers_per_block"]):
                    paths = renew_attention_paths(attns[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config)

    mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key]
    mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key]
    mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key]

    # Mid new 2
    paths = renew_resnet_paths(mid_block_1_layers)
    assign_to_checkpoint(
        paths,
        new_checkpoint,
        checkpoint,
        additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_1", "new": "resnets.0"}],
    )

    paths = renew_resnet_paths(mid_block_2_layers)
    assign_to_checkpoint(
        paths,
        new_checkpoint,
        checkpoint,
        additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_2", "new": "resnets.1"}],
    )

    paths = renew_attention_paths(mid_attn_1_layers, in_mid=True)
    assign_to_checkpoint(
        paths,
        new_checkpoint,
        checkpoint,
        additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "attn_1", "new": "attentions.0"}],
    )

    for i in range(num_up_blocks):
        block_id = num_up_blocks - 1 - i

        if any("upsample" in layer for layer in up_blocks[i]):
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[
                f"up.{i}.upsample.conv.weight"
            ]
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[f"up.{i}.upsample.conv.bias"]

        if any("block" in layer for layer in up_blocks[i]):
            num_blocks = len(
                {".".join(shave_segments(layer, 2).split(".")[:2]) for layer in up_blocks[i] if "block" in layer}
            )
            blocks = {
                layer_id: [key for key in up_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks)
            }

            if num_blocks > 0:
                for j in range(config["layers_per_block"] + 1):
                    replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"}
                    paths = renew_resnet_paths(blocks[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices])

        if any("attn" in layer for layer in up_blocks[i]):
            num_attn = len(
                {".".join(shave_segments(layer, 2).split(".")[:2]) for layer in up_blocks[i] if "attn" in layer}
            )
            attns = {
                layer_id: [key for key in up_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks)
            }

            if num_attn > 0:
                for j in range(config["layers_per_block"] + 1):
                    replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"}
                    paths = renew_attention_paths(attns[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices])

    new_checkpoint = {k.replace("mid_new_2", "mid_block"): v for k, v in new_checkpoint.items()}
    return new_checkpoint


def convert_vq_autoenc_checkpoint(checkpoint, config):
    """
    Takes a state dict and a config, and returns a converted checkpoint.
    """
    new_checkpoint = {}

    new_checkpoint["encoder.conv_norm_out.weight"] = checkpoint["encoder.norm_out.weight"]
    new_checkpoint["encoder.conv_norm_out.bias"] = checkpoint["encoder.norm_out.bias"]

    new_checkpoint["encoder.conv_in.weight"] = checkpoint["encoder.conv_in.weight"]
    new_checkpoint["encoder.conv_in.bias"] = checkpoint["encoder.conv_in.bias"]
    new_checkpoint["encoder.conv_out.weight"] = checkpoint["encoder.conv_out.weight"]
    new_checkpoint["encoder.conv_out.bias"] = checkpoint["encoder.conv_out.bias"]

    new_checkpoint["decoder.conv_norm_out.weight"] = checkpoint["decoder.norm_out.weight"]
    new_checkpoint["decoder.conv_norm_out.bias"] = checkpoint["decoder.norm_out.bias"]

    new_checkpoint["decoder.conv_in.weight"] = checkpoint["decoder.conv_in.weight"]
    new_checkpoint["decoder.conv_in.bias"] = checkpoint["decoder.conv_in.bias"]
    new_checkpoint["decoder.conv_out.weight"] = checkpoint["decoder.conv_out.weight"]
    new_checkpoint["decoder.conv_out.bias"] = checkpoint["decoder.conv_out.bias"]

    num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in checkpoint if "down" in layer})
    down_blocks = {
        layer_id: [key for key in checkpoint if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
    }

    num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in checkpoint if "up" in layer})
    up_blocks = {layer_id: [key for key in checkpoint if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)}

    for i in range(num_down_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)

        if any("downsample" in layer for layer in down_blocks[i]):
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = checkpoint[
                f"encoder.down.{i}.downsample.conv.weight"
            ]
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = checkpoint[
                f"encoder.down.{i}.downsample.conv.bias"
            ]

        if any("block" in layer for layer in down_blocks[i]):
            num_blocks = len(
                {".".join(shave_segments(layer, 3).split(".")[:3]) for layer in down_blocks[i] if "block" in layer}
            )
            blocks = {
                layer_id: [key for key in down_blocks[i] if f"block.{layer_id}" in key]
                for layer_id in range(num_blocks)
            }

            if num_blocks > 0:
                for j in range(config["layers_per_block"]):
                    paths = renew_resnet_paths(blocks[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint)

        if any("attn" in layer for layer in down_blocks[i]):
            num_attn = len(
                {".".join(shave_segments(layer, 3).split(".")[:3]) for layer in down_blocks[i] if "attn" in layer}
            )
            attns = {
                layer_id: [key for key in down_blocks[i] if f"attn.{layer_id}" in key]
                for layer_id in range(num_blocks)
            }

            if num_attn > 0:
                for j in range(config["layers_per_block"]):
                    paths = renew_attention_paths(attns[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config)

    mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key]
    mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key]
    mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key]

    # Mid new 2
    paths = renew_resnet_paths(mid_block_1_layers)
    assign_to_checkpoint(
        paths,
        new_checkpoint,
        checkpoint,
        additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_1", "new": "resnets.0"}],
    )

    paths = renew_resnet_paths(mid_block_2_layers)
    assign_to_checkpoint(
        paths,
        new_checkpoint,
        checkpoint,
        additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_2", "new": "resnets.1"}],
    )

    paths = renew_attention_paths(mid_attn_1_layers, in_mid=True)
    assign_to_checkpoint(
        paths,
        new_checkpoint,
        checkpoint,
        additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "attn_1", "new": "attentions.0"}],
    )

    for i in range(num_up_blocks):
        block_id = num_up_blocks - 1 - i

        if any("upsample" in layer for layer in up_blocks[i]):
            new_checkpoint[f"decoder.up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[
                f"decoder.up.{i}.upsample.conv.weight"
            ]
            new_checkpoint[f"decoder.up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[
                f"decoder.up.{i}.upsample.conv.bias"
            ]

        if any("block" in layer for layer in up_blocks[i]):
            num_blocks = len(
                {".".join(shave_segments(layer, 3).split(".")[:3]) for layer in up_blocks[i] if "block" in layer}
            )
            blocks = {
                layer_id: [key for key in up_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks)
            }

            if num_blocks > 0:
                for j in range(config["layers_per_block"] + 1):
                    replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"}
                    paths = renew_resnet_paths(blocks[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices])

        if any("attn" in layer for layer in up_blocks[i]):
            num_attn = len(
                {".".join(shave_segments(layer, 3).split(".")[:3]) for layer in up_blocks[i] if "attn" in layer}
            )
            attns = {
                layer_id: [key for key in up_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks)
            }

            if num_attn > 0:
                for j in range(config["layers_per_block"] + 1):
                    replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"}
                    paths = renew_attention_paths(attns[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices])

    new_checkpoint = {k.replace("mid_new_2", "mid_block"): v for k, v in new_checkpoint.items()}
    new_checkpoint["quant_conv.weight"] = checkpoint["quant_conv.weight"]
    new_checkpoint["quant_conv.bias"] = checkpoint["quant_conv.bias"]
    if "quantize.embedding.weight" in checkpoint:
        new_checkpoint["quantize.embedding.weight"] = checkpoint["quantize.embedding.weight"]
    new_checkpoint["post_quant_conv.weight"] = checkpoint["post_quant_conv.weight"]
    new_checkpoint["post_quant_conv.bias"] = checkpoint["post_quant_conv.bias"]

    return new_checkpoint


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
    )

    parser.add_argument(
        "--config_file",
        default=None,
        type=str,
        required=True,
        help="The config json file corresponding to the architecture.",
    )

    parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")

    args = parser.parse_args()
    checkpoint = torch.load(args.checkpoint_path)

    with open(args.config_file) as f:
        config = json.loads(f.read())

    # unet case
    key_prefix_set = {key.split(".")[0] for key in checkpoint.keys()}
    if "encoder" in key_prefix_set and "decoder" in key_prefix_set:
        converted_checkpoint = convert_vq_autoenc_checkpoint(checkpoint, config)
    else:
        converted_checkpoint = convert_ddpm_checkpoint(checkpoint, config)

    if "ddpm" in config:
        del config["ddpm"]

    if config["_class_name"] == "VQModel":
        model = VQModel(**config)
        model.load_state_dict(converted_checkpoint)
        model.save_pretrained(args.dump_path)
    elif config["_class_name"] == "AutoencoderKL":
        model = AutoencoderKL(**config)
        model.load_state_dict(converted_checkpoint)
        model.save_pretrained(args.dump_path)
    else:
        model = UNet2DModel(**config)
        model.load_state_dict(converted_checkpoint)

        scheduler = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1]))

        pipe = DDPMPipeline(unet=model, scheduler=scheduler)
        pipe.save_pretrained(args.dump_path)