File size: 11,759 Bytes
dde5d93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import argparse
from contextlib import nullcontext
import safetensors.torch
import torch
from accelerate import init_empty_weights
from diffusers import AutoencoderKL, SD3Transformer2DModel
from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint
from diffusers.models.modeling_utils import load_model_dict_into_meta
from diffusers.utils.import_utils import is_accelerate_available
CTX = init_empty_weights if is_accelerate_available else nullcontext
parser = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", type=str)
parser.add_argument("--output_path", type=str)
parser.add_argument("--dtype", type=str, default="fp16")
args = parser.parse_args()
dtype = torch.float16 if args.dtype == "fp16" else torch.float32
def load_original_checkpoint(ckpt_path):
original_state_dict = safetensors.torch.load_file(ckpt_path)
keys = list(original_state_dict.keys())
for k in keys:
if "model.diffusion_model." in k:
original_state_dict[k.replace("model.diffusion_model.", "")] = original_state_dict.pop(k)
return original_state_dict
# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
def swap_scale_shift(weight, dim):
shift, scale = weight.chunk(2, dim=0)
new_weight = torch.cat([scale, shift], dim=0)
return new_weight
def convert_sd3_transformer_checkpoint_to_diffusers(original_state_dict, num_layers, caption_projection_dim):
converted_state_dict = {}
# Positional and patch embeddings.
converted_state_dict["pos_embed.pos_embed"] = original_state_dict.pop("pos_embed")
converted_state_dict["pos_embed.proj.weight"] = original_state_dict.pop("x_embedder.proj.weight")
converted_state_dict["pos_embed.proj.bias"] = original_state_dict.pop("x_embedder.proj.bias")
# Timestep embeddings.
converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop(
"t_embedder.mlp.0.weight"
)
converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop(
"t_embedder.mlp.0.bias"
)
converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop(
"t_embedder.mlp.2.weight"
)
converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop(
"t_embedder.mlp.2.bias"
)
# Context projections.
converted_state_dict["context_embedder.weight"] = original_state_dict.pop("context_embedder.weight")
converted_state_dict["context_embedder.bias"] = original_state_dict.pop("context_embedder.bias")
# Pooled context projection.
converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = original_state_dict.pop(
"y_embedder.mlp.0.weight"
)
converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = original_state_dict.pop(
"y_embedder.mlp.0.bias"
)
converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = original_state_dict.pop(
"y_embedder.mlp.2.weight"
)
converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = original_state_dict.pop(
"y_embedder.mlp.2.bias"
)
# Transformer blocks 🎸.
for i in range(num_layers):
# Q, K, V
sample_q, sample_k, sample_v = torch.chunk(
original_state_dict.pop(f"joint_blocks.{i}.x_block.attn.qkv.weight"), 3, dim=0
)
context_q, context_k, context_v = torch.chunk(
original_state_dict.pop(f"joint_blocks.{i}.context_block.attn.qkv.weight"), 3, dim=0
)
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
original_state_dict.pop(f"joint_blocks.{i}.x_block.attn.qkv.bias"), 3, dim=0
)
context_q_bias, context_k_bias, context_v_bias = torch.chunk(
original_state_dict.pop(f"joint_blocks.{i}.context_block.attn.qkv.bias"), 3, dim=0
)
converted_state_dict[f"transformer_blocks.{i}.attn.to_q.weight"] = torch.cat([sample_q])
converted_state_dict[f"transformer_blocks.{i}.attn.to_q.bias"] = torch.cat([sample_q_bias])
converted_state_dict[f"transformer_blocks.{i}.attn.to_k.weight"] = torch.cat([sample_k])
converted_state_dict[f"transformer_blocks.{i}.attn.to_k.bias"] = torch.cat([sample_k_bias])
converted_state_dict[f"transformer_blocks.{i}.attn.to_v.weight"] = torch.cat([sample_v])
converted_state_dict[f"transformer_blocks.{i}.attn.to_v.bias"] = torch.cat([sample_v_bias])
converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.weight"] = torch.cat([context_q])
converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.bias"] = torch.cat([context_q_bias])
converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.weight"] = torch.cat([context_k])
converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.bias"] = torch.cat([context_k_bias])
converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.weight"] = torch.cat([context_v])
converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.bias"] = torch.cat([context_v_bias])
# output projections.
converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.attn.proj.weight"
)
converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.attn.proj.bias"
)
if not (i == num_layers - 1):
converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.attn.proj.weight"
)
converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.attn.proj.bias"
)
# norms.
converted_state_dict[f"transformer_blocks.{i}.norm1.linear.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.adaLN_modulation.1.weight"
)
converted_state_dict[f"transformer_blocks.{i}.norm1.linear.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.adaLN_modulation.1.bias"
)
if not (i == num_layers - 1):
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"
)
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"
)
else:
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = swap_scale_shift(
original_state_dict.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"),
dim=caption_projection_dim,
)
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = swap_scale_shift(
original_state_dict.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"),
dim=caption_projection_dim,
)
# ffs.
converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.mlp.fc1.weight"
)
converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.mlp.fc1.bias"
)
converted_state_dict[f"transformer_blocks.{i}.ff.net.2.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.mlp.fc2.weight"
)
converted_state_dict[f"transformer_blocks.{i}.ff.net.2.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.mlp.fc2.bias"
)
if not (i == num_layers - 1):
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.mlp.fc1.weight"
)
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.mlp.fc1.bias"
)
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.mlp.fc2.weight"
)
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.mlp.fc2.bias"
)
# Final blocks.
converted_state_dict["proj_out.weight"] = original_state_dict.pop("final_layer.linear.weight")
converted_state_dict["proj_out.bias"] = original_state_dict.pop("final_layer.linear.bias")
converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
original_state_dict.pop("final_layer.adaLN_modulation.1.weight"), dim=caption_projection_dim
)
converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(
original_state_dict.pop("final_layer.adaLN_modulation.1.bias"), dim=caption_projection_dim
)
return converted_state_dict
def is_vae_in_checkpoint(original_state_dict):
return ("first_stage_model.decoder.conv_in.weight" in original_state_dict) and (
"first_stage_model.encoder.conv_in.weight" in original_state_dict
)
def main(args):
original_ckpt = load_original_checkpoint(args.checkpoint_path)
num_layers = list(set(int(k.split(".", 2)[1]) for k in original_ckpt if "joint_blocks" in k))[-1] + 1 # noqa: C401
caption_projection_dim = 1536
converted_transformer_state_dict = convert_sd3_transformer_checkpoint_to_diffusers(
original_ckpt, num_layers, caption_projection_dim
)
with CTX():
transformer = SD3Transformer2DModel(
sample_size=64,
patch_size=2,
in_channels=16,
joint_attention_dim=4096,
num_layers=num_layers,
caption_projection_dim=caption_projection_dim,
num_attention_heads=24,
pos_embed_max_size=192,
)
if is_accelerate_available():
load_model_dict_into_meta(transformer, converted_transformer_state_dict)
else:
transformer.load_state_dict(converted_transformer_state_dict, strict=True)
print("Saving SD3 Transformer in Diffusers format.")
transformer.to(dtype).save_pretrained(f"{args.output_path}/transformer")
if is_vae_in_checkpoint(original_ckpt):
with CTX():
vae = AutoencoderKL.from_config(
"stabilityai/stable-diffusion-xl-base-1.0",
subfolder="vae",
latent_channels=16,
use_post_quant_conv=False,
use_quant_conv=False,
scaling_factor=1.5305,
shift_factor=0.0609,
)
converted_vae_state_dict = convert_ldm_vae_checkpoint(original_ckpt, vae.config)
if is_accelerate_available():
load_model_dict_into_meta(vae, converted_vae_state_dict)
else:
vae.load_state_dict(converted_vae_state_dict, strict=True)
print("Saving SD3 Autoencoder in Diffusers format.")
vae.to(dtype).save_pretrained(f"{args.output_path}/vae")
if __name__ == "__main__":
main(args)
|