File size: 10,955 Bytes
dde5d93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# Run this script to convert the Stable Cascade model weights to a diffusers pipeline.
import argparse
import json
import os
from contextlib import nullcontext
import torch
from safetensors.torch import load_file
from transformers import (
AutoTokenizer,
T5EncoderModel,
)
from diffusers import (
AutoencoderOobleck,
CosineDPMSolverMultistepScheduler,
StableAudioDiTModel,
StableAudioPipeline,
StableAudioProjectionModel,
)
from diffusers.models.modeling_utils import load_model_dict_into_meta
from diffusers.utils import is_accelerate_available
if is_accelerate_available():
from accelerate import init_empty_weights
def convert_stable_audio_state_dict_to_diffusers(state_dict, num_autoencoder_layers=5):
projection_model_state_dict = {
k.replace("conditioner.conditioners.", "").replace("embedder.embedding", "time_positional_embedding"): v
for (k, v) in state_dict.items()
if "conditioner.conditioners" in k
}
# NOTE: we assume here that there's no projection layer from the text encoder to the latent space, script should be adapted a bit if there is.
for key, value in list(projection_model_state_dict.items()):
new_key = key.replace("seconds_start", "start_number_conditioner").replace(
"seconds_total", "end_number_conditioner"
)
projection_model_state_dict[new_key] = projection_model_state_dict.pop(key)
model_state_dict = {k.replace("model.model.", ""): v for (k, v) in state_dict.items() if "model.model." in k}
for key, value in list(model_state_dict.items()):
# attention layers
new_key = (
key.replace("transformer.", "")
.replace("layers", "transformer_blocks")
.replace("self_attn", "attn1")
.replace("cross_attn", "attn2")
.replace("ff.ff", "ff.net")
)
new_key = (
new_key.replace("pre_norm", "norm1")
.replace("cross_attend_norm", "norm2")
.replace("ff_norm", "norm3")
.replace("to_out", "to_out.0")
)
new_key = new_key.replace("gamma", "weight").replace("beta", "bias") # replace layernorm
# other layers
new_key = (
new_key.replace("project", "proj")
.replace("to_timestep_embed", "timestep_proj")
.replace("timestep_features", "time_proj")
.replace("to_global_embed", "global_proj")
.replace("to_cond_embed", "cross_attention_proj")
)
# we're using diffusers implementation of time_proj (GaussianFourierProjection) which creates a 1D tensor
if new_key == "time_proj.weight":
model_state_dict[key] = model_state_dict[key].squeeze(1)
if "to_qkv" in new_key:
q, k, v = torch.chunk(model_state_dict.pop(key), 3, dim=0)
model_state_dict[new_key.replace("qkv", "q")] = q
model_state_dict[new_key.replace("qkv", "k")] = k
model_state_dict[new_key.replace("qkv", "v")] = v
elif "to_kv" in new_key:
k, v = torch.chunk(model_state_dict.pop(key), 2, dim=0)
model_state_dict[new_key.replace("kv", "k")] = k
model_state_dict[new_key.replace("kv", "v")] = v
else:
model_state_dict[new_key] = model_state_dict.pop(key)
autoencoder_state_dict = {
k.replace("pretransform.model.", "").replace("coder.layers.0", "coder.conv1"): v
for (k, v) in state_dict.items()
if "pretransform.model." in k
}
for key, _ in list(autoencoder_state_dict.items()):
new_key = key
if "coder.layers" in new_key:
# get idx of the layer
idx = int(new_key.split("coder.layers.")[1].split(".")[0])
new_key = new_key.replace(f"coder.layers.{idx}", f"coder.block.{idx-1}")
if "encoder" in new_key:
for i in range(3):
new_key = new_key.replace(f"block.{idx-1}.layers.{i}", f"block.{idx-1}.res_unit{i+1}")
new_key = new_key.replace(f"block.{idx-1}.layers.3", f"block.{idx-1}.snake1")
new_key = new_key.replace(f"block.{idx-1}.layers.4", f"block.{idx-1}.conv1")
else:
for i in range(2, 5):
new_key = new_key.replace(f"block.{idx-1}.layers.{i}", f"block.{idx-1}.res_unit{i-1}")
new_key = new_key.replace(f"block.{idx-1}.layers.0", f"block.{idx-1}.snake1")
new_key = new_key.replace(f"block.{idx-1}.layers.1", f"block.{idx-1}.conv_t1")
new_key = new_key.replace("layers.0.beta", "snake1.beta")
new_key = new_key.replace("layers.0.alpha", "snake1.alpha")
new_key = new_key.replace("layers.2.beta", "snake2.beta")
new_key = new_key.replace("layers.2.alpha", "snake2.alpha")
new_key = new_key.replace("layers.1.bias", "conv1.bias")
new_key = new_key.replace("layers.1.weight_", "conv1.weight_")
new_key = new_key.replace("layers.3.bias", "conv2.bias")
new_key = new_key.replace("layers.3.weight_", "conv2.weight_")
if idx == num_autoencoder_layers + 1:
new_key = new_key.replace(f"block.{idx-1}", "snake1")
elif idx == num_autoencoder_layers + 2:
new_key = new_key.replace(f"block.{idx-1}", "conv2")
else:
new_key = new_key
value = autoencoder_state_dict.pop(key)
if "snake" in new_key:
value = value.unsqueeze(0).unsqueeze(-1)
if new_key in autoencoder_state_dict:
raise ValueError(f"{new_key} already in state dict.")
autoencoder_state_dict[new_key] = value
return model_state_dict, projection_model_state_dict, autoencoder_state_dict
parser = argparse.ArgumentParser(description="Convert Stable Audio 1.0 model weights to a diffusers pipeline")
parser.add_argument("--model_folder_path", type=str, help="Location of Stable Audio weights and config")
parser.add_argument("--use_safetensors", action="store_true", help="Use SafeTensors for conversion")
parser.add_argument(
"--save_directory",
type=str,
default="./tmp/stable-audio-1.0",
help="Directory to save a pipeline to. Will be created if it doesn't exist.",
)
parser.add_argument(
"--repo_id",
type=str,
default="stable-audio-1.0",
help="Hub organization to save the pipelines to",
)
parser.add_argument("--push_to_hub", action="store_true", help="Push to hub")
parser.add_argument("--variant", type=str, help="Set to bf16 to save bfloat16 weights")
args = parser.parse_args()
checkpoint_path = (
os.path.join(args.model_folder_path, "model.safetensors")
if args.use_safetensors
else os.path.join(args.model_folder_path, "model.ckpt")
)
config_path = os.path.join(args.model_folder_path, "model_config.json")
device = "cpu"
if args.variant == "bf16":
dtype = torch.bfloat16
else:
dtype = torch.float32
with open(config_path) as f_in:
config_dict = json.load(f_in)
conditioning_dict = {
conditioning["id"]: conditioning["config"] for conditioning in config_dict["model"]["conditioning"]["configs"]
}
t5_model_config = conditioning_dict["prompt"]
# T5 Text encoder
text_encoder = T5EncoderModel.from_pretrained(t5_model_config["t5_model_name"])
tokenizer = AutoTokenizer.from_pretrained(
t5_model_config["t5_model_name"], truncation=True, model_max_length=t5_model_config["max_length"]
)
# scheduler
scheduler = CosineDPMSolverMultistepScheduler(
sigma_min=0.3,
sigma_max=500,
solver_order=2,
prediction_type="v_prediction",
sigma_data=1.0,
sigma_schedule="exponential",
)
ctx = init_empty_weights if is_accelerate_available() else nullcontext
if args.use_safetensors:
orig_state_dict = load_file(checkpoint_path, device=device)
else:
orig_state_dict = torch.load(checkpoint_path, map_location=device)
model_config = config_dict["model"]["diffusion"]["config"]
model_state_dict, projection_model_state_dict, autoencoder_state_dict = convert_stable_audio_state_dict_to_diffusers(
orig_state_dict
)
with ctx():
projection_model = StableAudioProjectionModel(
text_encoder_dim=text_encoder.config.d_model,
conditioning_dim=config_dict["model"]["conditioning"]["cond_dim"],
min_value=conditioning_dict["seconds_start"][
"min_val"
], # assume `seconds_start` and `seconds_total` have the same min / max values.
max_value=conditioning_dict["seconds_start"][
"max_val"
], # assume `seconds_start` and `seconds_total` have the same min / max values.
)
if is_accelerate_available():
load_model_dict_into_meta(projection_model, projection_model_state_dict)
else:
projection_model.load_state_dict(projection_model_state_dict)
attention_head_dim = model_config["embed_dim"] // model_config["num_heads"]
with ctx():
model = StableAudioDiTModel(
sample_size=int(config_dict["sample_size"])
/ int(config_dict["model"]["pretransform"]["config"]["downsampling_ratio"]),
in_channels=model_config["io_channels"],
num_layers=model_config["depth"],
attention_head_dim=attention_head_dim,
num_key_value_attention_heads=model_config["cond_token_dim"] // attention_head_dim,
num_attention_heads=model_config["num_heads"],
out_channels=model_config["io_channels"],
cross_attention_dim=model_config["cond_token_dim"],
time_proj_dim=256,
global_states_input_dim=model_config["global_cond_dim"],
cross_attention_input_dim=model_config["cond_token_dim"],
)
if is_accelerate_available():
load_model_dict_into_meta(model, model_state_dict)
else:
model.load_state_dict(model_state_dict)
autoencoder_config = config_dict["model"]["pretransform"]["config"]
with ctx():
autoencoder = AutoencoderOobleck(
encoder_hidden_size=autoencoder_config["encoder"]["config"]["channels"],
downsampling_ratios=autoencoder_config["encoder"]["config"]["strides"],
decoder_channels=autoencoder_config["decoder"]["config"]["channels"],
decoder_input_channels=autoencoder_config["decoder"]["config"]["latent_dim"],
audio_channels=autoencoder_config["io_channels"],
channel_multiples=autoencoder_config["encoder"]["config"]["c_mults"],
sampling_rate=config_dict["sample_rate"],
)
if is_accelerate_available():
load_model_dict_into_meta(autoencoder, autoencoder_state_dict)
else:
autoencoder.load_state_dict(autoencoder_state_dict)
# Prior pipeline
pipeline = StableAudioPipeline(
transformer=model,
tokenizer=tokenizer,
text_encoder=text_encoder,
scheduler=scheduler,
vae=autoencoder,
projection_model=projection_model,
)
pipeline.to(dtype).save_pretrained(
args.save_directory, repo_id=args.repo_id, push_to_hub=args.push_to_hub, variant=args.variant
)
|