File size: 10,955 Bytes
dde5d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# Run this script to convert the Stable Cascade model weights to a diffusers pipeline.
import argparse
import json
import os
from contextlib import nullcontext

import torch
from safetensors.torch import load_file
from transformers import (
    AutoTokenizer,
    T5EncoderModel,
)

from diffusers import (
    AutoencoderOobleck,
    CosineDPMSolverMultistepScheduler,
    StableAudioDiTModel,
    StableAudioPipeline,
    StableAudioProjectionModel,
)
from diffusers.models.modeling_utils import load_model_dict_into_meta
from diffusers.utils import is_accelerate_available


if is_accelerate_available():
    from accelerate import init_empty_weights


def convert_stable_audio_state_dict_to_diffusers(state_dict, num_autoencoder_layers=5):
    projection_model_state_dict = {
        k.replace("conditioner.conditioners.", "").replace("embedder.embedding", "time_positional_embedding"): v
        for (k, v) in state_dict.items()
        if "conditioner.conditioners" in k
    }

    # NOTE: we assume here that there's no projection layer from the text encoder to the latent space, script should be adapted a bit if there is.
    for key, value in list(projection_model_state_dict.items()):
        new_key = key.replace("seconds_start", "start_number_conditioner").replace(
            "seconds_total", "end_number_conditioner"
        )
        projection_model_state_dict[new_key] = projection_model_state_dict.pop(key)

    model_state_dict = {k.replace("model.model.", ""): v for (k, v) in state_dict.items() if "model.model." in k}
    for key, value in list(model_state_dict.items()):
        # attention layers
        new_key = (
            key.replace("transformer.", "")
            .replace("layers", "transformer_blocks")
            .replace("self_attn", "attn1")
            .replace("cross_attn", "attn2")
            .replace("ff.ff", "ff.net")
        )
        new_key = (
            new_key.replace("pre_norm", "norm1")
            .replace("cross_attend_norm", "norm2")
            .replace("ff_norm", "norm3")
            .replace("to_out", "to_out.0")
        )
        new_key = new_key.replace("gamma", "weight").replace("beta", "bias")  # replace layernorm

        # other layers
        new_key = (
            new_key.replace("project", "proj")
            .replace("to_timestep_embed", "timestep_proj")
            .replace("timestep_features", "time_proj")
            .replace("to_global_embed", "global_proj")
            .replace("to_cond_embed", "cross_attention_proj")
        )

        # we're using diffusers implementation of time_proj (GaussianFourierProjection) which creates a 1D tensor
        if new_key == "time_proj.weight":
            model_state_dict[key] = model_state_dict[key].squeeze(1)

        if "to_qkv" in new_key:
            q, k, v = torch.chunk(model_state_dict.pop(key), 3, dim=0)
            model_state_dict[new_key.replace("qkv", "q")] = q
            model_state_dict[new_key.replace("qkv", "k")] = k
            model_state_dict[new_key.replace("qkv", "v")] = v
        elif "to_kv" in new_key:
            k, v = torch.chunk(model_state_dict.pop(key), 2, dim=0)
            model_state_dict[new_key.replace("kv", "k")] = k
            model_state_dict[new_key.replace("kv", "v")] = v
        else:
            model_state_dict[new_key] = model_state_dict.pop(key)

    autoencoder_state_dict = {
        k.replace("pretransform.model.", "").replace("coder.layers.0", "coder.conv1"): v
        for (k, v) in state_dict.items()
        if "pretransform.model." in k
    }

    for key, _ in list(autoencoder_state_dict.items()):
        new_key = key
        if "coder.layers" in new_key:
            # get idx of the layer
            idx = int(new_key.split("coder.layers.")[1].split(".")[0])

            new_key = new_key.replace(f"coder.layers.{idx}", f"coder.block.{idx-1}")

            if "encoder" in new_key:
                for i in range(3):
                    new_key = new_key.replace(f"block.{idx-1}.layers.{i}", f"block.{idx-1}.res_unit{i+1}")
                new_key = new_key.replace(f"block.{idx-1}.layers.3", f"block.{idx-1}.snake1")
                new_key = new_key.replace(f"block.{idx-1}.layers.4", f"block.{idx-1}.conv1")
            else:
                for i in range(2, 5):
                    new_key = new_key.replace(f"block.{idx-1}.layers.{i}", f"block.{idx-1}.res_unit{i-1}")
                new_key = new_key.replace(f"block.{idx-1}.layers.0", f"block.{idx-1}.snake1")
                new_key = new_key.replace(f"block.{idx-1}.layers.1", f"block.{idx-1}.conv_t1")

            new_key = new_key.replace("layers.0.beta", "snake1.beta")
            new_key = new_key.replace("layers.0.alpha", "snake1.alpha")
            new_key = new_key.replace("layers.2.beta", "snake2.beta")
            new_key = new_key.replace("layers.2.alpha", "snake2.alpha")
            new_key = new_key.replace("layers.1.bias", "conv1.bias")
            new_key = new_key.replace("layers.1.weight_", "conv1.weight_")
            new_key = new_key.replace("layers.3.bias", "conv2.bias")
            new_key = new_key.replace("layers.3.weight_", "conv2.weight_")

            if idx == num_autoencoder_layers + 1:
                new_key = new_key.replace(f"block.{idx-1}", "snake1")
            elif idx == num_autoencoder_layers + 2:
                new_key = new_key.replace(f"block.{idx-1}", "conv2")

        else:
            new_key = new_key

        value = autoencoder_state_dict.pop(key)
        if "snake" in new_key:
            value = value.unsqueeze(0).unsqueeze(-1)
        if new_key in autoencoder_state_dict:
            raise ValueError(f"{new_key} already in state dict.")
        autoencoder_state_dict[new_key] = value

    return model_state_dict, projection_model_state_dict, autoencoder_state_dict


parser = argparse.ArgumentParser(description="Convert Stable Audio 1.0 model weights to a diffusers pipeline")
parser.add_argument("--model_folder_path", type=str, help="Location of Stable Audio weights and config")
parser.add_argument("--use_safetensors", action="store_true", help="Use SafeTensors for conversion")
parser.add_argument(
    "--save_directory",
    type=str,
    default="./tmp/stable-audio-1.0",
    help="Directory to save a pipeline to. Will be created if it doesn't exist.",
)
parser.add_argument(
    "--repo_id",
    type=str,
    default="stable-audio-1.0",
    help="Hub organization to save the pipelines to",
)
parser.add_argument("--push_to_hub", action="store_true", help="Push to hub")
parser.add_argument("--variant", type=str, help="Set to bf16 to save bfloat16 weights")

args = parser.parse_args()

checkpoint_path = (
    os.path.join(args.model_folder_path, "model.safetensors")
    if args.use_safetensors
    else os.path.join(args.model_folder_path, "model.ckpt")
)
config_path = os.path.join(args.model_folder_path, "model_config.json")

device = "cpu"
if args.variant == "bf16":
    dtype = torch.bfloat16
else:
    dtype = torch.float32

with open(config_path) as f_in:
    config_dict = json.load(f_in)

conditioning_dict = {
    conditioning["id"]: conditioning["config"] for conditioning in config_dict["model"]["conditioning"]["configs"]
}

t5_model_config = conditioning_dict["prompt"]

# T5 Text encoder
text_encoder = T5EncoderModel.from_pretrained(t5_model_config["t5_model_name"])
tokenizer = AutoTokenizer.from_pretrained(
    t5_model_config["t5_model_name"], truncation=True, model_max_length=t5_model_config["max_length"]
)


# scheduler
scheduler = CosineDPMSolverMultistepScheduler(
    sigma_min=0.3,
    sigma_max=500,
    solver_order=2,
    prediction_type="v_prediction",
    sigma_data=1.0,
    sigma_schedule="exponential",
)
ctx = init_empty_weights if is_accelerate_available() else nullcontext


if args.use_safetensors:
    orig_state_dict = load_file(checkpoint_path, device=device)
else:
    orig_state_dict = torch.load(checkpoint_path, map_location=device)


model_config = config_dict["model"]["diffusion"]["config"]

model_state_dict, projection_model_state_dict, autoencoder_state_dict = convert_stable_audio_state_dict_to_diffusers(
    orig_state_dict
)


with ctx():
    projection_model = StableAudioProjectionModel(
        text_encoder_dim=text_encoder.config.d_model,
        conditioning_dim=config_dict["model"]["conditioning"]["cond_dim"],
        min_value=conditioning_dict["seconds_start"][
            "min_val"
        ],  # assume `seconds_start` and `seconds_total` have the same min / max values.
        max_value=conditioning_dict["seconds_start"][
            "max_val"
        ],  # assume `seconds_start` and `seconds_total` have the same min / max values.
    )
if is_accelerate_available():
    load_model_dict_into_meta(projection_model, projection_model_state_dict)
else:
    projection_model.load_state_dict(projection_model_state_dict)

attention_head_dim = model_config["embed_dim"] // model_config["num_heads"]
with ctx():
    model = StableAudioDiTModel(
        sample_size=int(config_dict["sample_size"])
        / int(config_dict["model"]["pretransform"]["config"]["downsampling_ratio"]),
        in_channels=model_config["io_channels"],
        num_layers=model_config["depth"],
        attention_head_dim=attention_head_dim,
        num_key_value_attention_heads=model_config["cond_token_dim"] // attention_head_dim,
        num_attention_heads=model_config["num_heads"],
        out_channels=model_config["io_channels"],
        cross_attention_dim=model_config["cond_token_dim"],
        time_proj_dim=256,
        global_states_input_dim=model_config["global_cond_dim"],
        cross_attention_input_dim=model_config["cond_token_dim"],
    )
if is_accelerate_available():
    load_model_dict_into_meta(model, model_state_dict)
else:
    model.load_state_dict(model_state_dict)


autoencoder_config = config_dict["model"]["pretransform"]["config"]
with ctx():
    autoencoder = AutoencoderOobleck(
        encoder_hidden_size=autoencoder_config["encoder"]["config"]["channels"],
        downsampling_ratios=autoencoder_config["encoder"]["config"]["strides"],
        decoder_channels=autoencoder_config["decoder"]["config"]["channels"],
        decoder_input_channels=autoencoder_config["decoder"]["config"]["latent_dim"],
        audio_channels=autoencoder_config["io_channels"],
        channel_multiples=autoencoder_config["encoder"]["config"]["c_mults"],
        sampling_rate=config_dict["sample_rate"],
    )

if is_accelerate_available():
    load_model_dict_into_meta(autoencoder, autoencoder_state_dict)
else:
    autoencoder.load_state_dict(autoencoder_state_dict)


# Prior pipeline
pipeline = StableAudioPipeline(
    transformer=model,
    tokenizer=tokenizer,
    text_encoder=text_encoder,
    scheduler=scheduler,
    vae=autoencoder,
    projection_model=projection_model,
)
pipeline.to(dtype).save_pretrained(
    args.save_directory, repo_id=args.repo_id, push_to_hub=args.push_to_hub, variant=args.variant
)