File size: 10,615 Bytes
dde5d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# coding=utf-8
# Copyright 2024 Latte Team and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import inspect
import tempfile
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    LattePipeline,
    LatteTransformer3DModel,
)
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    numpy_cosine_similarity_distance,
    require_torch_gpu,
    slow,
    torch_device,
)

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, to_np


enable_full_determinism()


class LattePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = LattePipeline
    params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS

    required_optional_params = PipelineTesterMixin.required_optional_params

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = LatteTransformer3DModel(
            sample_size=8,
            num_layers=1,
            patch_size=2,
            attention_head_dim=8,
            num_attention_heads=3,
            caption_channels=32,
            in_channels=4,
            cross_attention_dim=24,
            out_channels=8,
            attention_bias=True,
            activation_fn="gelu-approximate",
            num_embeds_ada_norm=1000,
            norm_type="ada_norm_single",
            norm_elementwise_affine=False,
            norm_eps=1e-6,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL()

        scheduler = DDIMScheduler()
        text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        components = {
            "transformer": transformer.eval(),
            "vae": vae.eval(),
            "scheduler": scheduler,
            "text_encoder": text_encoder.eval(),
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "negative_prompt": "low quality",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "height": 8,
            "width": 8,
            "video_length": 1,
            "output_type": "pt",
            "clean_caption": False,
        }
        return inputs

    def test_inference(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        video = pipe(**inputs).frames
        generated_video = video[0]

        self.assertEqual(generated_video.shape, (1, 3, 8, 8))
        expected_video = torch.randn(1, 3, 8, 8)
        max_diff = np.abs(generated_video - expected_video).max()
        self.assertLessEqual(max_diff, 1e10)

    def test_callback_inputs(self):
        sig = inspect.signature(self.pipeline_class.__call__)
        has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
        has_callback_step_end = "callback_on_step_end" in sig.parameters

        if not (has_callback_tensor_inputs and has_callback_step_end):
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        self.assertTrue(
            hasattr(pipe, "_callback_tensor_inputs"),
            f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
        )

        def callback_inputs_subset(pipe, i, t, callback_kwargs):
            # iterate over callback args
            for tensor_name, tensor_value in callback_kwargs.items():
                # check that we're only passing in allowed tensor inputs
                assert tensor_name in pipe._callback_tensor_inputs

            return callback_kwargs

        def callback_inputs_all(pipe, i, t, callback_kwargs):
            for tensor_name in pipe._callback_tensor_inputs:
                assert tensor_name in callback_kwargs

            # iterate over callback args
            for tensor_name, tensor_value in callback_kwargs.items():
                # check that we're only passing in allowed tensor inputs
                assert tensor_name in pipe._callback_tensor_inputs

            return callback_kwargs

        inputs = self.get_dummy_inputs(torch_device)

        # Test passing in a subset
        inputs["callback_on_step_end"] = callback_inputs_subset
        inputs["callback_on_step_end_tensor_inputs"] = ["latents"]
        output = pipe(**inputs)[0]

        # Test passing in a everything
        inputs["callback_on_step_end"] = callback_inputs_all
        inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
        output = pipe(**inputs)[0]

        def callback_inputs_change_tensor(pipe, i, t, callback_kwargs):
            is_last = i == (pipe.num_timesteps - 1)
            if is_last:
                callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
            return callback_kwargs

        inputs["callback_on_step_end"] = callback_inputs_change_tensor
        inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
        output = pipe(**inputs)[0]
        assert output.abs().sum() < 1e10

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-3)

    def test_attention_slicing_forward_pass(self):
        pass

    def test_save_load_optional_components(self):
        if not hasattr(self.pipeline_class, "_optional_components"):
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        prompt = inputs["prompt"]
        generator = inputs["generator"]

        (
            prompt_embeds,
            negative_prompt_embeds,
        ) = pipe.encode_prompt(prompt)

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "height": 8,
            "width": 8,
            "video_length": 1,
            "mask_feature": False,
            "output_type": "pt",
            "clean_caption": False,
        }

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir, safe_serialization=False)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)

            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()

            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, 1.0)

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        super()._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False)


@slow
@require_torch_gpu
class LattePipelineIntegrationTests(unittest.TestCase):
    prompt = "A painting of a squirrel eating a burger."

    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_latte(self):
        generator = torch.Generator("cpu").manual_seed(0)

        pipe = LattePipeline.from_pretrained("maxin-cn/Latte-1", torch_dtype=torch.float16)
        pipe.enable_model_cpu_offload()
        prompt = self.prompt

        videos = pipe(
            prompt=prompt,
            height=512,
            width=512,
            generator=generator,
            num_inference_steps=2,
            clean_caption=False,
        ).frames

        video = videos[0]
        expected_video = torch.randn(1, 512, 512, 3).numpy()

        max_diff = numpy_cosine_similarity_distance(video.flatten(), expected_video)
        assert max_diff < 1e-3, f"Max diff is too high. got {video.flatten()}"