#!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import shutil import sys import tempfile from diffusers import DiffusionPipeline, UNet2DConditionModel # noqa: E402 sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class TextToImage(ExamplesTestsAccelerate): def test_text_to_image(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/text_to_image/train_text_to_image.py --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) def test_text_to_image_checkpointing(self): pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" prompt = "a prompt" with tempfile.TemporaryDirectory() as tmpdir: # Run training script with checkpointing # max_train_steps == 4, checkpointing_steps == 2 # Should create checkpoints at steps 2, 4 initial_run_args = f""" examples/text_to_image/train_text_to_image.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 4 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --seed=0 """.split() run_command(self._launch_args + initial_run_args) pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) pipe(prompt, num_inference_steps=1) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}, ) # check can run an intermediate checkpoint unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) pipe(prompt, num_inference_steps=1) # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) # Run training script for 2 total steps resuming from checkpoint 4 resume_run_args = f""" examples/text_to_image/train_text_to_image.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=1 --resume_from_checkpoint=checkpoint-4 --seed=0 """.split() run_command(self._launch_args + resume_run_args) # check can run new fully trained pipeline pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) pipe(prompt, num_inference_steps=1) # no checkpoint-2 -> check old checkpoints do not exist # check new checkpoints exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-5"}, ) def test_text_to_image_checkpointing_use_ema(self): pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" prompt = "a prompt" with tempfile.TemporaryDirectory() as tmpdir: # Run training script with checkpointing # max_train_steps == 4, checkpointing_steps == 2 # Should create checkpoints at steps 2, 4 initial_run_args = f""" examples/text_to_image/train_text_to_image.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 4 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --use_ema --seed=0 """.split() run_command(self._launch_args + initial_run_args) pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) pipe(prompt, num_inference_steps=2) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}, ) # check can run an intermediate checkpoint unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) pipe(prompt, num_inference_steps=1) # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) # Run training script for 2 total steps resuming from checkpoint 4 resume_run_args = f""" examples/text_to_image/train_text_to_image.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=1 --resume_from_checkpoint=checkpoint-4 --use_ema --seed=0 """.split() run_command(self._launch_args + resume_run_args) # check can run new fully trained pipeline pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) pipe(prompt, num_inference_steps=1) # no checkpoint-2 -> check old checkpoints do not exist # check new checkpoints exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-5"}, ) def test_text_to_image_checkpointing_checkpoints_total_limit(self): pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" prompt = "a prompt" with tempfile.TemporaryDirectory() as tmpdir: # Run training script with checkpointing # max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2 # Should create checkpoints at steps 2, 4, 6 # with checkpoint at step 2 deleted initial_run_args = f""" examples/text_to_image/train_text_to_image.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 6 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --checkpoints_total_limit=2 --seed=0 """.split() run_command(self._launch_args + initial_run_args) pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) pipe(prompt, num_inference_steps=1) # check checkpoint directories exist # checkpoint-2 should have been deleted self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}) def test_text_to_image_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" prompt = "a prompt" with tempfile.TemporaryDirectory() as tmpdir: # Run training script with checkpointing # max_train_steps == 4, checkpointing_steps == 2 # Should create checkpoints at steps 2, 4 initial_run_args = f""" examples/text_to_image/train_text_to_image.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 4 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --seed=0 """.split() run_command(self._launch_args + initial_run_args) pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) pipe(prompt, num_inference_steps=1) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}, ) # resume and we should try to checkpoint at 6, where we'll have to remove # checkpoint-2 and checkpoint-4 instead of just a single previous checkpoint resume_run_args = f""" examples/text_to_image/train_text_to_image.py --pretrained_model_name_or_path {pretrained_model_name_or_path} --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 8 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --resume_from_checkpoint=checkpoint-4 --checkpoints_total_limit=2 --seed=0 """.split() run_command(self._launch_args + resume_run_args) pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) pipe(prompt, num_inference_steps=1) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}, ) class TextToImageSDXL(ExamplesTestsAccelerate): def test_text_to_image_sdxl(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/text_to_image/train_text_to_image_sdxl.py --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --center_crop --random_flip --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))