lunar-rl-model / config.json
Nadilazev's picture
Upload PPO LunarLander-v2 trained agent
3a9b7a2 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ce1e9286560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ce1e92865f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ce1e9286680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ce1e9286710>", "_build": "<function ActorCriticPolicy._build at 0x7ce1e92867a0>", "forward": "<function ActorCriticPolicy.forward at 0x7ce1e9286830>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ce1e92868c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ce1e9286950>", "_predict": "<function ActorCriticPolicy._predict at 0x7ce1e92869e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ce1e9286a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ce1e9286b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ce1e9286b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ce1e9094900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716751952982961042, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0T3L1mSQ8/i0uivFQd6L4fg729OvZMvQAAAAAAAAAA8zcjPimpcLxL6QK6gJAKONzV3L3r5y85AACAPwAAgD/wHJw+Vu5HPxDzL76yAhK/0lwhP5UhF74AAAAAAAAAAM00dD2ftIO7Q9ZmvN9/ODxXh7e81rIiPQAAgD8AAIA/MzwWPgwg0z5N4Xm+VmiXvhUpJL1K9hC+AAAAAAAAAACtSgE+5HoEPmwXzDyhy0a+mw3fPIOH+DwAAAAAAAAAAFrVoj1IuYY5zerHu9xTnTZePHQ6yhIVtgAAAAAAAAAATfGRPcP1e7o1jee9C+EDPWOMAbugZeG9AACAPwAAgD86+xQ+TwxhPYX1vL3cmYi+kJsHvGHtg7wAAAAAAAAAANPdJz7KRL4+hrE4vtvhh77gDlE7BkbBvQAAAAAAAAAAZtxUvOHWgTsiNTM+88MSvkbLZD0CqMK+AAAAAAAAgD9gYx2+PwApP+DG4zwCZ/q+B2ZHvjrUDj4AAAAAAAAAACZPGL7Zb2g/uBoSvkFA/L5pLDm+lTrYPQAAAAAAAAAAmrixPNI/hLtOe/G8XZsRPfYIsDxY1PK9AACAPwAAgD+aBTC8QGiYPk1SZL12TaG+Yb9JvTiokDwAAAAAAAAAAIB8uz2kXpc/EzkJP8fDML+MXqg9Kk94PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKjDN2TxG6MAWyUS/+MAXSUR0CcOW0w8GLUdX2UKGgGR0Bw5p2U0Nz9aAdL3mgIR0CcOdouwosqdX2UKGgGR0Bxcibwz+FUaAdL42gIR0CcOhY6nzg/dX2UKGgGR0Bw3RXtBv74aAdL1GgIR0CcOlXfqHGkdX2UKGgGR0Bw97vG6wt8aAdLzWgIR0CcOqBczImxdX2UKGgGR0ByMGuW8h9taAdLzWgIR0CcO9h0yP+5dX2UKGgGR0Bx8HyZrpJPaAdL3GgIR0CcO/Ox0MgEdX2UKGgGR0BwBVT1kDp1aAdL62gIR0CcPCkKu0TldX2UKGgGR0Bu9BB1LamGaAdLz2gIR0CcPJjp9qk/dX2UKGgGR0Bw3vZL7GedaAdL6WgIR0CcPLhzNliCdX2UKGgGR0BzVUIzFdcCaAdL12gIR0CcPQB+4LCvdX2UKGgGR0BuZdo+OfdzaAdL1GgIR0CcPTTNdJJ5dX2UKGgGR0Bw5hsDW9UTaAdNEgFoCEdAnD5NTxXnyXV9lChoBkdAZTtkuHvc8GgHTegDaAhHQJw+1MsYl6Z1fZQoaAZHQHBC34Kx9ohoB0vSaAhHQJw/AIWxhUl1fZQoaAZHQHJb27FsHjZoB0vTaAhHQJw/q3CsOoZ1fZQoaAZHQHKOPRE4NqhoB00KAWgIR0CcP+BO58SgdX2UKGgGR0BxhdKsdT5waAdLyWgIR0CcP++glF+edX2UKGgGR0BzLD+VC5VfaAdL52gIR0CcP/aPjn3ddX2UKGgGR0Bx+o7A+IM0aAdL42gIR0CcQEdYnv2HdX2UKGgGR0Bx2F8LKFIvaAdL0GgIR0CcQSXHim2tdX2UKGgGR0Bw/iO938oAaAdL52gIR0CcQdiADq4ZdX2UKGgGR0BxzrZ8KG+LaAdL1mgIR0CcQicnmaH9dX2UKGgGR0Bv/SQ9zOopaAdLx2gIR0CcQkUR3/xUdX2UKGgGR0BwtgAKfFrEaAdL8WgIR0CcQk5YHPeIdX2UKGgGR0ByN+ZUkv9MaAdL42gIR0CcQlxSYPXkdX2UKGgGR0Bxmx+rlvIfaAdL52gIR0CcQsslb/wRdX2UKGgGR0BxEMC6pYLcaAdL72gIR0CcRGIEr5IpdX2UKGgGR0BytbVmSQo1aAdL2mgIR0CcRIiYsunNdX2UKGgGR0Bvvdoakyk9aAdL12gIR0CcRSlS0jTsdX2UKGgGR0Bv1uJP69CeaAdL02gIR0CcRUbs4T9LdX2UKGgGR0Bz6SBEroW6aAdL/mgIR0CcRV0rK/21dX2UKGgGR0Bxjb8pCrtFaAdLyGgIR0CcRW+rU9ZBdX2UKGgGR0ByjLfsNUfgaAdL42gIR0CcRbwsGxD9dX2UKGgGR0BgUUzfrKNiaAdN6ANoCEdAnEXQUDdP+HV9lChoBkdAcnKBreqJdmgHS/BoCEdAnEYIoNNJv3V9lChoBkdAbQOaKDTScGgHS9hoCEdAnEaJd0JWvXV9lChoBkdAceaoePq9oWgHS9NoCEdAnEb+rlvIfnV9lChoBkdAcE4NGmUGFGgHS+1oCEdAnEfjgdfb9XV9lChoBkdAcWX2Dg62fGgHS9JoCEdAnEftUS7GvXV9lChoBkdAc2JqvvBrOGgHS+toCEdAnEf0aQ3gk3V9lChoBkdAch72VE/jbWgHS/loCEdAnEhLaAWi13V9lChoBkdAcaop9qk/KWgHS/loCEdAnEhZoCdSVHV9lChoBkdAcPIqbBoEjmgHS81oCEdAnEkkPlMh5nV9lChoBkdAcX9GCZnctWgHS+doCEdAnEniTEBKc3V9lChoBkdAbzWrU9ZA6mgHS81oCEdAnEnlnM+u/3V9lChoBkdAcwEhKlHjImgHS9poCEdAnEoZ4bCJoHV9lChoBkdAcLSeizsyBWgHS8toCEdAnEpaAjIJaHV9lChoBkdAcROhm5DqnmgHS9BoCEdAnEpkq6OHWXV9lChoBkdAcOIZOzposmgHS+5oCEdAnEq305EMLHV9lChoBkdAcbgAC4jKPmgHS/FoCEdAnErYZ2pyZXV9lChoBkdAbyEGahHskmgHS+NoCEdAnEscIzFdcHV9lChoBkdAbzkyfthNNGgHS9xoCEdAnEt75uZTh3V9lChoBkdAbVHf3vhIfGgHS9hoCEdAnEvl58jRlnV9lChoBkdAblt+Q2dd3WgHS9JoCEdAnEyYt16mf3V9lChoBkdAc5LKTB68hGgHS9JoCEdAnEyhXCCSR3V9lChoBkdAc12OhTOxB2gHS99oCEdAnE1Kg7HQyHV9lChoBkdAcD2FxGUfP2gHS+9oCEdAnE1PfTCtR3V9lChoBkdAcx+VhkRSP2gHS/loCEdAnE3ynpB5X3V9lChoBkdAcGHMnJDE32gHS+ZoCEdAnE5goTfzjHV9lChoBkdAcHMyIHkcTGgHS+BoCEdAnE8AoG6f8XV9lChoBkdAcnhBBzFMqWgHS9VoCEdAnE9Iq0+kg3V9lChoBkdAcyeoJAt4A2gHS+5oCEdAnE9hDb8FZHV9lChoBkdAcbgBKL8762gHS8VoCEdAnE++EAYHgXV9lChoBkdAcBhCzC1qnGgHS+9oCEdAnFBftx+8XnV9lChoBkdAcCDtqHoHLWgHTQwBaAhHQJxQbBvaURp1fZQoaAZHQHFLkFGG21FoB0vPaAhHQJxQfUnXumd1fZQoaAZHQHJ2puhsZYRoB0vxaAhHQJxQkOlO45N1fZQoaAZHQG9XwT238XNoB0vKaAhHQJxQwUbkwN91fZQoaAZHQHHgz0HyEtdoB0vSaAhHQJxRqQYDT0B1fZQoaAZHQHFYIPCl7+loB0v5aAhHQJxSsjB2wFF1fZQoaAZHQHIQ5hjOLR9oB0viaAhHQJxS3LPldTp1fZQoaAZHQHBJpiqhlDpoB0vnaAhHQJxTAOavzOJ1fZQoaAZHQG/IikwevIRoB0vnaAhHQJxTq8g6ltV1fZQoaAZHQHNaijQAuI1oB0vVaAhHQJxTqqMm4RV1fZQoaAZHQHFjG7BfrrxoB0vbaAhHQJxU57Uoa1l1fZQoaAZHQHF2KSX+l0poB0voaAhHQJxVLaIvalF1fZQoaAZHQHFDc0gr6LxoB0vNaAhHQJxVoNG3F1l1fZQoaAZHQHC1RZuAI6doB00FAWgIR0CcVbPJJXhgdX2UKGgGR0By2RFUhmoSaAdL52gIR0CcVkFoL5RCdX2UKGgGR0BzoBEYwZflaAdNBwFoCEdAnFZ7Ak9lmXV9lChoBkdAcd88qnWJ8GgHS/loCEdAnFbsTnJT2nV9lChoBkdAcWLppN9H+mgHS/hoCEdAnFcgEZBLPHV9lChoBkdAchMHdoFmnWgHTQcBaAhHQJxXM5CF9KF1fZQoaAZHQHDB2gBcRlJoB0v1aAhHQJxYD1mJ3xF1fZQoaAZHQHEWHZTQ3P1oB0vTaAhHQJxYam51/2F1fZQoaAZHQG4N19fCyhVoB0viaAhHQJxYoXMyJsR1fZQoaAZHQHGNaePJaJRoB0vfaAhHQJxZkqx1PnB1fZQoaAZHQG6hDzRQaaVoB0vmaAhHQJxZwVN5+ph1fZQoaAZHQHLCUIsyzoloB00OAWgIR0CcWhWEK3NLdX2UKGgGR0Bvq6/EfkmyaAdLy2gIR0CcWj4gRsdldX2UKGgGR0ByRreMyad+aAdL1GgIR0CcWrTvRZ2ZdX2UKGgGR0BwLTsTnJT3aAdL5GgIR0CcW4RTjvNNdX2UKGgGR0BxlUAEMb3oaAdL5WgIR0CcW5384xUOdX2UKGgGR0BxT7YI0IkaaAdL0mgIR0CcW66zVtoBdX2UKGgGR0Bu3Lf+CK77aAdL02gIR0CcW+stCiRGdX2UKGgGR0ByUse7tiQUaAdL1GgIR0CcXLO5rgwXdX2UKGgGR0BxHUIgNgBtaAdL5GgIR0CcXNaQV9F4dX2UKGgGR0BwjQN9YwIuaAdL7WgIR0CcXUU+9rXUdX2UKGgGR0BzOg0tRNypaAdL0WgIR0CcXgs0YTCcdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}