File size: 2,756 Bytes
5dad409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
base_model: sagorsarker/bangla-bert-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: bangla-bert-base-MLTC-BB2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bangla-bert-base-MLTC-BB2

This model is a fine-tuned version of [sagorsarker/bangla-bert-base](https://huggingface.co/sagorsarker/bangla-bert-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4005
- F1: 0.8514
- F1 Weighted: 0.8504
- Roc Auc: 0.8470
- Accuracy: 0.5424
- Hamming Loss: 0.1530
- Jaccard Score: 0.7413
- Zero One Loss: 0.4576

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | F1 Weighted | Roc Auc | Accuracy | Hamming Loss | Jaccard Score | Zero One Loss |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:-------:|:--------:|:------------:|:-------------:|:-------------:|
| 0.4015        | 1.0   | 73   | 0.4027          | 0.8246 | 0.8201      | 0.8206  | 0.5039   | 0.1793       | 0.7016        | 0.4961        |
| 0.3579        | 2.0   | 146  | 0.3583          | 0.8541 | 0.8548      | 0.8522  | 0.5553   | 0.1478       | 0.7453        | 0.4447        |
| 0.2831        | 3.0   | 219  | 0.3768          | 0.8429 | 0.8402      | 0.8360  | 0.5398   | 0.1639       | 0.7284        | 0.4602        |
| 0.1799        | 4.0   | 292  | 0.3565          | 0.8534 | 0.8534      | 0.8489  | 0.5604   | 0.1510       | 0.7443        | 0.4396        |
| 0.1671        | 5.0   | 365  | 0.3724          | 0.8552 | 0.8547      | 0.8508  | 0.5681   | 0.1491       | 0.7470        | 0.4319        |
| 0.1451        | 6.0   | 438  | 0.3773          | 0.8493 | 0.8484      | 0.8477  | 0.5450   | 0.1523       | 0.7381        | 0.4550        |
| 0.0899        | 7.0   | 511  | 0.3986          | 0.8502 | 0.8494      | 0.8457  | 0.5398   | 0.1542       | 0.7394        | 0.4602        |
| 0.0744        | 8.0   | 584  | 0.4005          | 0.8514 | 0.8504      | 0.8470  | 0.5424   | 0.1530       | 0.7413        | 0.4576        |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1