|
--- |
|
license: mit |
|
base_model: sagorsarker/bangla-bert-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bangla-bert-base-MLTC-BB2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bangla-bert-base-MLTC-BB2 |
|
|
|
This model is a fine-tuned version of [sagorsarker/bangla-bert-base](https://huggingface.co/sagorsarker/bangla-bert-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4005 |
|
- F1: 0.8514 |
|
- F1 Weighted: 0.8504 |
|
- Roc Auc: 0.8470 |
|
- Accuracy: 0.5424 |
|
- Hamming Loss: 0.1530 |
|
- Jaccard Score: 0.7413 |
|
- Zero One Loss: 0.4576 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | F1 Weighted | Roc Auc | Accuracy | Hamming Loss | Jaccard Score | Zero One Loss | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:-------:|:--------:|:------------:|:-------------:|:-------------:| |
|
| 0.4015 | 1.0 | 73 | 0.4027 | 0.8246 | 0.8201 | 0.8206 | 0.5039 | 0.1793 | 0.7016 | 0.4961 | |
|
| 0.3579 | 2.0 | 146 | 0.3583 | 0.8541 | 0.8548 | 0.8522 | 0.5553 | 0.1478 | 0.7453 | 0.4447 | |
|
| 0.2831 | 3.0 | 219 | 0.3768 | 0.8429 | 0.8402 | 0.8360 | 0.5398 | 0.1639 | 0.7284 | 0.4602 | |
|
| 0.1799 | 4.0 | 292 | 0.3565 | 0.8534 | 0.8534 | 0.8489 | 0.5604 | 0.1510 | 0.7443 | 0.4396 | |
|
| 0.1671 | 5.0 | 365 | 0.3724 | 0.8552 | 0.8547 | 0.8508 | 0.5681 | 0.1491 | 0.7470 | 0.4319 | |
|
| 0.1451 | 6.0 | 438 | 0.3773 | 0.8493 | 0.8484 | 0.8477 | 0.5450 | 0.1523 | 0.7381 | 0.4550 | |
|
| 0.0899 | 7.0 | 511 | 0.3986 | 0.8502 | 0.8494 | 0.8457 | 0.5398 | 0.1542 | 0.7394 | 0.4602 | |
|
| 0.0744 | 8.0 | 584 | 0.4005 | 0.8514 | 0.8504 | 0.8470 | 0.5424 | 0.1530 | 0.7413 | 0.4576 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|