NahedAbdelgaber commited on
Commit
db6f4c0
1 Parent(s): 4bb00f4

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - Satellite-Instrument-NER
5
+ widget:
6
+ - text: "Centroid Moment Tensor Global Navigation Satellite System GNSS"
7
+ - text: "This paper describes the latest version of the algorithm MAIAC used for processing the MODIS Collection 6 data record."
8
+ - text: "We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME - 2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation."
9
+ license: mit
10
+
11
+ ---
12
+ # bert-base-NER
13
+
14
+ ## Model description
15
+
16
+ **bert-base-NER** is a fine-tuned BERT model that is ready to use for **Named Entity Recognition** and achieves **F1 0.61** for the NER task. It has been trained to recognize two types of entities: instrument and satellite.
17
+
18
+ Specifically, this model is a *bert-base-cased* model that was fine-tuned on Satellite-Instrument-NER dataset.
19
+
20
+
21
+
22
+ ## Intended uses & limitations
23
+
24
+ #### How to use
25
+
26
+ You can use this model with Transformers *pipeline* for NER.
27
+
28
+ ```python
29
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
30
+ from transformers import pipeline
31
+ tokenizer = AutoTokenizer.from_pretrained("NahedAbdelgaber/ner_base_model")
32
+ model = AutoModelForTokenClassification.from_pretrained("NahedAbdelgaber/ner_base_model")
33
+ nlp = pipeline("ner", model=model, tokenizer=tokenizer)
34
+ example = "Centroid Moment Tensor Global Navigation Satellite System GNSS"
35
+ ner_results = nlp(example)
36
+ print(ner_results)
37
+ ```