Natthaphon
commited on
Commit
·
e137a83
1
Parent(s):
056a690
Added model
Browse files- config.json +111 -0
- configuration_clipcap.py +107 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modeling_clipcap.py +290 -0
- preprocessor_config.json +27 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +20 -0
- vocab.json +0 -0
config.json
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/media/palm/BiggerData/capgen/hub/pth/gpt2_clip_1e-4_encoder_freeze",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPEncoderDecoderModel"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_clipcap.CLIPEncoderDecoderConfig",
|
8 |
+
"AutoModel": "modeling_clipcap.CLIPEncoderDecoderModel"
|
9 |
+
},
|
10 |
+
"decoder": {
|
11 |
+
"_name_or_path": "/project/lt200203-aimedi/palm/huggingface/gpt2",
|
12 |
+
"add_cross_attention": true,
|
13 |
+
"architectures": [
|
14 |
+
"GPT2LMHeadModel"
|
15 |
+
],
|
16 |
+
"is_decoder": true,
|
17 |
+
"model_type": "gpt2",
|
18 |
+
"n_ctx": 1024,
|
19 |
+
"task_specific_params": {
|
20 |
+
"text-generation": {
|
21 |
+
"do_sample": true,
|
22 |
+
"max_length": 50
|
23 |
+
}
|
24 |
+
}
|
25 |
+
},
|
26 |
+
"decoder_start_token_id": 50256,
|
27 |
+
"encoder": {
|
28 |
+
"_name_or_path": "",
|
29 |
+
"add_cross_attention": false,
|
30 |
+
"architectures": null,
|
31 |
+
"attention_dropout": 0.0,
|
32 |
+
"bad_words_ids": null,
|
33 |
+
"begin_suppress_tokens": null,
|
34 |
+
"bos_token_id": null,
|
35 |
+
"chunk_size_feed_forward": 0,
|
36 |
+
"cross_attention_hidden_size": null,
|
37 |
+
"decoder_start_token_id": null,
|
38 |
+
"diversity_penalty": 0.0,
|
39 |
+
"do_sample": false,
|
40 |
+
"dropout": 0.0,
|
41 |
+
"early_stopping": false,
|
42 |
+
"encoder_no_repeat_ngram_size": 0,
|
43 |
+
"eos_token_id": null,
|
44 |
+
"exponential_decay_length_penalty": null,
|
45 |
+
"finetuning_task": null,
|
46 |
+
"forced_bos_token_id": null,
|
47 |
+
"forced_eos_token_id": null,
|
48 |
+
"hidden_act": "quick_gelu",
|
49 |
+
"hidden_size": 512,
|
50 |
+
"id2label": {
|
51 |
+
"0": "LABEL_0",
|
52 |
+
"1": "LABEL_1"
|
53 |
+
},
|
54 |
+
"image_size": 224,
|
55 |
+
"initializer_factor": 1.0,
|
56 |
+
"initializer_range": 0.02,
|
57 |
+
"intermediate_size": 3072,
|
58 |
+
"is_decoder": false,
|
59 |
+
"is_encoder_decoder": false,
|
60 |
+
"label2id": {
|
61 |
+
"LABEL_0": 0,
|
62 |
+
"LABEL_1": 1
|
63 |
+
},
|
64 |
+
"layer_norm_eps": 1e-05,
|
65 |
+
"length_penalty": 1.0,
|
66 |
+
"max_length": 20,
|
67 |
+
"min_length": 0,
|
68 |
+
"model_type": "clip_vision_model",
|
69 |
+
"no_repeat_ngram_size": 0,
|
70 |
+
"num_attention_heads": 12,
|
71 |
+
"num_beam_groups": 1,
|
72 |
+
"num_beams": 1,
|
73 |
+
"num_channels": 3,
|
74 |
+
"num_hidden_layers": 12,
|
75 |
+
"num_return_sequences": 1,
|
76 |
+
"output_attentions": false,
|
77 |
+
"output_hidden_states": false,
|
78 |
+
"output_scores": false,
|
79 |
+
"pad_token_id": null,
|
80 |
+
"patch_size": 32,
|
81 |
+
"prefix": null,
|
82 |
+
"problem_type": null,
|
83 |
+
"projection_dim": 512,
|
84 |
+
"pruned_heads": {},
|
85 |
+
"remove_invalid_values": false,
|
86 |
+
"repetition_penalty": 1.0,
|
87 |
+
"return_dict": true,
|
88 |
+
"return_dict_in_generate": false,
|
89 |
+
"sep_token_id": null,
|
90 |
+
"suppress_tokens": null,
|
91 |
+
"task_specific_params": null,
|
92 |
+
"temperature": 1.0,
|
93 |
+
"tf_legacy_loss": false,
|
94 |
+
"tie_encoder_decoder": false,
|
95 |
+
"tie_word_embeddings": true,
|
96 |
+
"tokenizer_class": null,
|
97 |
+
"top_k": 50,
|
98 |
+
"top_p": 1.0,
|
99 |
+
"torch_dtype": null,
|
100 |
+
"torchscript": false,
|
101 |
+
"typical_p": 1.0,
|
102 |
+
"use_bfloat16": false
|
103 |
+
},
|
104 |
+
"eos_token_id": 50256,
|
105 |
+
"is_encoder_decoder": true,
|
106 |
+
"model_type": "clip-encoder-decoder",
|
107 |
+
"pad_token_id": 50256,
|
108 |
+
"tie_word_embeddings": false,
|
109 |
+
"torch_dtype": "float32",
|
110 |
+
"transformers_version": "4.36.2"
|
111 |
+
}
|
configuration_clipcap.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig, AutoConfig
|
2 |
+
|
3 |
+
|
4 |
+
class CLIPEncoderDecoderConfig(PretrainedConfig):
|
5 |
+
model_type = "clip-encoder-decoder"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
decoder={'_name_or_path': '',
|
10 |
+
'activation_function': 'gelu_new',
|
11 |
+
'add_cross_attention': True,
|
12 |
+
'architectures': ['GPT2LMHeadModel'],
|
13 |
+
'attn_pdrop': 0.1,
|
14 |
+
'bad_words_ids': None,
|
15 |
+
'begin_suppress_tokens': None,
|
16 |
+
'bos_token_id': 50256,
|
17 |
+
'chunk_size_feed_forward': 0,
|
18 |
+
'cross_attention_hidden_size': None,
|
19 |
+
'decoder_start_token_id': None,
|
20 |
+
'diversity_penalty': 0.0,
|
21 |
+
'do_sample': False,
|
22 |
+
'early_stopping': False,
|
23 |
+
'embd_pdrop': 0.1,
|
24 |
+
'encoder_no_repeat_ngram_size': 0,
|
25 |
+
'eos_token_id': 50256,
|
26 |
+
'exponential_decay_length_penalty': None,
|
27 |
+
'finetuning_task': None,
|
28 |
+
'forced_bos_token_id': None,
|
29 |
+
'forced_eos_token_id': None,
|
30 |
+
'id2label': {'0': 'LABEL_0', '1': 'LABEL_1'},
|
31 |
+
'initializer_range': 0.02,
|
32 |
+
'is_decoder': True,
|
33 |
+
'is_encoder_decoder': False,
|
34 |
+
'label2id': {'LABEL_0': 0, 'LABEL_1': 1},
|
35 |
+
'layer_norm_epsilon': 1e-05,
|
36 |
+
'length_penalty': 1.0,
|
37 |
+
'max_length': 20,
|
38 |
+
'min_length': 0,
|
39 |
+
'model_type': 'gpt2',
|
40 |
+
'n_ctx': 1024,
|
41 |
+
'n_embd': 768,
|
42 |
+
'n_head': 12,
|
43 |
+
'n_inner': None,
|
44 |
+
'n_layer': 12,
|
45 |
+
'n_positions': 1024,
|
46 |
+
'no_repeat_ngram_size': 0,
|
47 |
+
'num_beam_groups': 1,
|
48 |
+
'num_beams': 1,
|
49 |
+
'num_return_sequences': 1,
|
50 |
+
'output_attentions': False,
|
51 |
+
'output_hidden_states': False,
|
52 |
+
'output_scores': False,
|
53 |
+
'pad_token_id': None,
|
54 |
+
'prefix': None,
|
55 |
+
'problem_type': None,
|
56 |
+
'pruned_heads': {},
|
57 |
+
'remove_invalid_values': False,
|
58 |
+
'reorder_and_upcast_attn': False,
|
59 |
+
'repetition_penalty': 1.0,
|
60 |
+
'resid_pdrop': 0.1,
|
61 |
+
'return_dict': True,
|
62 |
+
'return_dict_in_generate': False,
|
63 |
+
'scale_attn_by_inverse_layer_idx': False,
|
64 |
+
'scale_attn_weights': True,
|
65 |
+
'sep_token_id': None,
|
66 |
+
'summary_activation': None,
|
67 |
+
'summary_first_dropout': 0.1,
|
68 |
+
'summary_proj_to_labels': True,
|
69 |
+
'summary_type': 'cls_index',
|
70 |
+
'summary_use_proj': True,
|
71 |
+
'suppress_tokens': None,
|
72 |
+
'task_specific_params': {'text-generation': {'do_sample': True,
|
73 |
+
'max_length': 50}},
|
74 |
+
'temperature': 1.0,
|
75 |
+
'tf_legacy_loss': False,
|
76 |
+
'tie_encoder_decoder': False,
|
77 |
+
'tie_word_embeddings': True,
|
78 |
+
'tokenizer_class': None,
|
79 |
+
'top_k': 50,
|
80 |
+
'top_p': 1.0,
|
81 |
+
'torch_dtype': None,
|
82 |
+
'torchscript': False,
|
83 |
+
'typical_p': 1.0,
|
84 |
+
'use_bfloat16': False,
|
85 |
+
'use_cache': True,
|
86 |
+
'vocab_size': 50257},
|
87 |
+
**kwargs):
|
88 |
+
super().__init__(**kwargs)
|
89 |
+
|
90 |
+
self.decoder = AutoConfig.for_model(**decoder)
|
91 |
+
self.is_encoder_decoder = True
|
92 |
+
|
93 |
+
@classmethod
|
94 |
+
def from_encoder_decoder_configs(
|
95 |
+
cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs
|
96 |
+
) -> PretrainedConfig:
|
97 |
+
r"""
|
98 |
+
Instantiate a [`VisionEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model
|
99 |
+
configuration and decoder model configuration.
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
[`VisionEncoderDecoderConfig`]: An instance of a configuration object
|
103 |
+
"""
|
104 |
+
decoder_config.is_decoder = True
|
105 |
+
decoder_config.add_cross_attention = True
|
106 |
+
|
107 |
+
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 50256,
|
4 |
+
"eos_token_id": 50256,
|
5 |
+
"transformers_version": "4.36.2"
|
6 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04fa063f78c3046b68b78d319a30fac67d7a0c38f6343109e0d9b7fa084490dd
|
3 |
+
size 1118642856
|
modeling_clipcap.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
PreTrainedModel,
|
3 |
+
VisionEncoderDecoderModel,
|
4 |
+
VisionEncoderDecoderConfig,
|
5 |
+
AutoModel,
|
6 |
+
AutoModelForCausalLM,
|
7 |
+
AutoConfig
|
8 |
+
)
|
9 |
+
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
|
10 |
+
from torch import nn
|
11 |
+
from .configuration_clipcap import CLIPEncoderDecoderConfig
|
12 |
+
from typing import Optional, Tuple, Union
|
13 |
+
import torch
|
14 |
+
import gc
|
15 |
+
import os
|
16 |
+
import tempfile
|
17 |
+
|
18 |
+
|
19 |
+
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
20 |
+
"""
|
21 |
+
Shift input ids one token to the right.
|
22 |
+
"""
|
23 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
24 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
25 |
+
if decoder_start_token_id is None:
|
26 |
+
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
|
27 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
28 |
+
|
29 |
+
if pad_token_id is None:
|
30 |
+
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
|
31 |
+
# replace possible -100 values in labels by `pad_token_id`
|
32 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
33 |
+
|
34 |
+
return shifted_input_ids
|
35 |
+
|
36 |
+
|
37 |
+
class Encoder(nn.Module):
|
38 |
+
main_input_name = 'pixel_values'
|
39 |
+
def __init__(self):
|
40 |
+
super().__init__()
|
41 |
+
clip = AutoModel.from_pretrained('openai/clip-vit-base-patch32')
|
42 |
+
self.vision_model = clip.vision_model
|
43 |
+
self.visual_projection = clip.visual_projection
|
44 |
+
self.config = clip.vision_model.config
|
45 |
+
self.config.hidden_size = clip.config.projection_dim
|
46 |
+
|
47 |
+
def forward(self, pixel_values, output_attentions=None, output_hidden_states=None, return_dict=False, **kwargs):
|
48 |
+
vision_outputs = self.vision_model(
|
49 |
+
pixel_values=pixel_values,
|
50 |
+
output_attentions=output_attentions,
|
51 |
+
output_hidden_states=output_hidden_states,
|
52 |
+
return_dict=return_dict,
|
53 |
+
)
|
54 |
+
|
55 |
+
pooled_output = vision_outputs[1] # pooled_output
|
56 |
+
image_features = self.visual_projection(pooled_output).view(pooled_output.size(0), 1, -1)
|
57 |
+
return BaseModelOutput(last_hidden_state=image_features)
|
58 |
+
def get_output_embeddings(self):
|
59 |
+
pass
|
60 |
+
|
61 |
+
class CLIPEncoderDecoderModel(PreTrainedModel):
|
62 |
+
config_class = CLIPEncoderDecoderConfig
|
63 |
+
base_model_prefix = "clip_encoder_decoder"
|
64 |
+
main_input_name = "pixel_values"
|
65 |
+
supports_gradient_checkpointing = True
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
config = None,
|
69 |
+
encoder = None,
|
70 |
+
decoder = None,
|
71 |
+
):
|
72 |
+
config.tie_word_embeddings = False
|
73 |
+
super().__init__(config)
|
74 |
+
|
75 |
+
encoder = Encoder()
|
76 |
+
encoder_hidden_size = encoder.config.hidden_size
|
77 |
+
|
78 |
+
if decoder is None:
|
79 |
+
decoder = AutoModelForCausalLM.from_config(config.decoder)
|
80 |
+
|
81 |
+
self.encoder = encoder
|
82 |
+
self.decoder = decoder
|
83 |
+
|
84 |
+
self.encoder.config = self.config.encoder
|
85 |
+
self.decoder.config = self.config.decoder
|
86 |
+
|
87 |
+
self.enc_to_dec_proj = nn.Linear(encoder_hidden_size, self.decoder.config.hidden_size)
|
88 |
+
|
89 |
+
def get_encoder(self):
|
90 |
+
return self.encoder
|
91 |
+
|
92 |
+
def get_decoder(self):
|
93 |
+
return self.decoder
|
94 |
+
|
95 |
+
def get_output_embeddings(self):
|
96 |
+
return self.decoder.get_output_embeddings()
|
97 |
+
|
98 |
+
def set_output_embeddings(self, new_embeddings):
|
99 |
+
return self.decoder.set_output_embeddings(new_embeddings)
|
100 |
+
|
101 |
+
@classmethod
|
102 |
+
def from_encoder_decoder_pretrained(
|
103 |
+
cls,
|
104 |
+
encoder_pretrained_model_name_or_path: str = None,
|
105 |
+
decoder_pretrained_model_name_or_path: str = None,
|
106 |
+
*model_args,
|
107 |
+
**kwargs,
|
108 |
+
) -> PreTrainedModel:
|
109 |
+
kwargs_encoder = {
|
110 |
+
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
|
111 |
+
}
|
112 |
+
|
113 |
+
kwargs_decoder = {
|
114 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
115 |
+
}
|
116 |
+
|
117 |
+
# remove encoder, decoder kwargs from kwargs
|
118 |
+
for key in kwargs_encoder.keys():
|
119 |
+
del kwargs["encoder_" + key]
|
120 |
+
for key in kwargs_decoder.keys():
|
121 |
+
del kwargs["decoder_" + key]
|
122 |
+
|
123 |
+
# Load and initialize the encoder and decoder
|
124 |
+
# The distinction between encoder and decoder at the model level is made
|
125 |
+
# by the value of the flag `is_decoder` that we need to set correctly.
|
126 |
+
encoder = kwargs_encoder.pop("model", None)
|
127 |
+
if encoder is None:
|
128 |
+
if encoder_pretrained_model_name_or_path is None:
|
129 |
+
raise ValueError(
|
130 |
+
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
|
131 |
+
"to be defined."
|
132 |
+
)
|
133 |
+
|
134 |
+
if "config" not in kwargs_encoder:
|
135 |
+
encoder_config, kwargs_encoder = AutoConfig.from_pretrained(
|
136 |
+
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
|
137 |
+
)
|
138 |
+
|
139 |
+
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
|
140 |
+
encoder_config.is_decoder = False
|
141 |
+
encoder_config.add_cross_attention = False
|
142 |
+
|
143 |
+
kwargs_encoder["config"] = encoder_config
|
144 |
+
|
145 |
+
encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)
|
146 |
+
|
147 |
+
decoder = kwargs_decoder.pop("model", None)
|
148 |
+
if decoder is None:
|
149 |
+
if decoder_pretrained_model_name_or_path is None:
|
150 |
+
raise ValueError(
|
151 |
+
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
|
152 |
+
"to be defined."
|
153 |
+
)
|
154 |
+
|
155 |
+
if "config" not in kwargs_decoder:
|
156 |
+
decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
|
157 |
+
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
|
158 |
+
)
|
159 |
+
|
160 |
+
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
|
161 |
+
decoder_config.is_decoder = True
|
162 |
+
decoder_config.add_cross_attention = True
|
163 |
+
|
164 |
+
kwargs_decoder["config"] = decoder_config
|
165 |
+
|
166 |
+
decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
|
167 |
+
|
168 |
+
# instantiate config with corresponding kwargs
|
169 |
+
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
|
170 |
+
|
171 |
+
# make sure input & output embeddings is not tied
|
172 |
+
config.tie_word_embeddings = False
|
173 |
+
return cls(encoder=encoder, decoder=decoder, config=config)
|
174 |
+
|
175 |
+
def forward(
|
176 |
+
self,
|
177 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
178 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
179 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
180 |
+
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
|
181 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
182 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
183 |
+
labels: Optional[torch.LongTensor] = None,
|
184 |
+
use_cache: Optional[bool] = None,
|
185 |
+
output_attentions: Optional[bool] = None,
|
186 |
+
output_hidden_states: Optional[bool] = None,
|
187 |
+
return_dict: Optional[bool] = None,
|
188 |
+
**kwargs,
|
189 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
190 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
191 |
+
|
192 |
+
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
|
193 |
+
|
194 |
+
kwargs_decoder = {
|
195 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
196 |
+
}
|
197 |
+
|
198 |
+
if encoder_outputs is None:
|
199 |
+
if pixel_values is None:
|
200 |
+
raise ValueError("You have to specify pixel_values")
|
201 |
+
|
202 |
+
encoder_outputs = self.encoder(
|
203 |
+
pixel_values,
|
204 |
+
output_attentions=output_attentions,
|
205 |
+
output_hidden_states=output_hidden_states,
|
206 |
+
return_dict=return_dict,
|
207 |
+
**kwargs_encoder,
|
208 |
+
)
|
209 |
+
elif isinstance(encoder_outputs, tuple):
|
210 |
+
encoder_outputs = BaseModelOutput(*encoder_outputs)
|
211 |
+
|
212 |
+
encoder_hidden_states = encoder_outputs[0]
|
213 |
+
|
214 |
+
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
|
215 |
+
|
216 |
+
# else:
|
217 |
+
encoder_attention_mask = None
|
218 |
+
|
219 |
+
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
|
220 |
+
decoder_input_ids = shift_tokens_right(
|
221 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
222 |
+
)
|
223 |
+
|
224 |
+
# Decode
|
225 |
+
decoder_outputs = self.decoder(
|
226 |
+
input_ids=decoder_input_ids,
|
227 |
+
attention_mask=decoder_attention_mask,
|
228 |
+
encoder_hidden_states=encoder_hidden_states,
|
229 |
+
encoder_attention_mask=encoder_attention_mask,
|
230 |
+
inputs_embeds=decoder_inputs_embeds,
|
231 |
+
output_attentions=output_attentions,
|
232 |
+
output_hidden_states=output_hidden_states,
|
233 |
+
use_cache=use_cache,
|
234 |
+
past_key_values=past_key_values,
|
235 |
+
return_dict=return_dict,
|
236 |
+
**kwargs_decoder,
|
237 |
+
)
|
238 |
+
|
239 |
+
# Compute loss independent from decoder (as some shift the logits inside them)
|
240 |
+
loss = None
|
241 |
+
if labels is not None:
|
242 |
+
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
|
243 |
+
loss_fct = nn.CrossEntropyLoss()
|
244 |
+
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
|
245 |
+
|
246 |
+
if not return_dict:
|
247 |
+
if loss is not None:
|
248 |
+
return (loss,) + decoder_outputs + encoder_outputs
|
249 |
+
else:
|
250 |
+
return decoder_outputs + encoder_outputs
|
251 |
+
|
252 |
+
return Seq2SeqLMOutput(
|
253 |
+
loss=loss,
|
254 |
+
logits=decoder_outputs.logits,
|
255 |
+
past_key_values=decoder_outputs.past_key_values,
|
256 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
257 |
+
decoder_attentions=decoder_outputs.attentions,
|
258 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
259 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
260 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
261 |
+
encoder_attentions=encoder_outputs.attentions,
|
262 |
+
)
|
263 |
+
|
264 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
265 |
+
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
|
266 |
+
|
267 |
+
def prepare_inputs_for_generation(
|
268 |
+
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
|
269 |
+
):
|
270 |
+
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
|
271 |
+
decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None
|
272 |
+
input_dict = {
|
273 |
+
"attention_mask": attention_mask,
|
274 |
+
"decoder_attention_mask": decoder_attention_mask,
|
275 |
+
"decoder_input_ids": decoder_inputs["input_ids"],
|
276 |
+
"encoder_outputs": encoder_outputs,
|
277 |
+
"past_key_values": decoder_inputs["past_key_values"],
|
278 |
+
"use_cache": use_cache,
|
279 |
+
}
|
280 |
+
return input_dict
|
281 |
+
|
282 |
+
def resize_token_embeddings(self, *args, **kwargs):
|
283 |
+
raise NotImplementedError(
|
284 |
+
"Resizing the embedding layers via the VisionEncoderDecoderModel directly is not supported.Please use the"
|
285 |
+
" respective methods of the wrapped decoder object (model.decoder.resize_token_embeddings(...))"
|
286 |
+
)
|
287 |
+
|
288 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
289 |
+
# apply decoder cache reordering here
|
290 |
+
return self.decoder._reorder_cache(past_key_values, beam_idx)
|
preprocessor_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 224,
|
4 |
+
"width": 224
|
5 |
+
},
|
6 |
+
"do_center_crop": true,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": true,
|
11 |
+
"image_mean": [
|
12 |
+
0.48145466,
|
13 |
+
0.4578275,
|
14 |
+
0.40821073
|
15 |
+
],
|
16 |
+
"image_processor_type": "CLIPImageProcessor",
|
17 |
+
"image_std": [
|
18 |
+
0.26862954,
|
19 |
+
0.26130258,
|
20 |
+
0.27577711
|
21 |
+
],
|
22 |
+
"resample": 3,
|
23 |
+
"rescale_factor": 0.00392156862745098,
|
24 |
+
"size": {
|
25 |
+
"shortest_edge": 224
|
26 |
+
}
|
27 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"50256": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
}
|
12 |
+
},
|
13 |
+
"bos_token": "<|endoftext|>",
|
14 |
+
"clean_up_tokenization_spaces": true,
|
15 |
+
"eos_token": "<|endoftext|>",
|
16 |
+
"model_max_length": 1000000000000000019884624838656,
|
17 |
+
"pad_token": "<|endoftext|>",
|
18 |
+
"tokenizer_class": "GPT2Tokenizer",
|
19 |
+
"unk_token": "<|endoftext|>"
|
20 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|