NazmusAshrafi
commited on
Commit
•
fb08ff8
1
Parent(s):
782fe2c
Add SetFit ABSA model
Browse files- 1_Pooling/config.json +7 -0
- README.md +200 -1
- config.json +24 -0
- config_sentence_transformers.json +7 -0
- config_setfit.json +6 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +59 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,202 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- absa
|
6 |
+
- sentence-transformers
|
7 |
+
- text-classification
|
8 |
+
- generated_from_setfit_trainer
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
widget:
|
12 |
+
- text: 'feel the most confidence in is $:Ron Barron: We see so much potential, we
|
13 |
+
don’t want to sell; Of all companies I cover & analysts come pitch to me,
|
14 |
+
the company I feel the most confidence in is $TSLA; People think we''re going
|
15 |
+
into a slowdown but demand for their cars has never been better.'
|
16 |
+
- text: 'surge! This Powerwall was underwater for:@TeslaSolar roof stood up to #HurricaneIan
|
17 |
+
with 155mph winds and storm surge! This Powerwall was underwater for hours and
|
18 |
+
is still working perfectly.'
|
19 |
+
- text: 'Guilty of overtrading in this aggressive:Guilty of overtrading in this aggressive
|
20 |
+
price action. I’m far from perfect but I try my best to keep my losses small. '
|
21 |
+
- text: 'Creating huge opportunities for investors who:Creating huge opportunities
|
22 |
+
for investors who can see past this rate hike cycle. Which should be over soon.
|
23 |
+
#tesla $TSLA'
|
24 |
+
- text: 'Investing in the stock market was and never:Investing in the stock market
|
25 |
+
was and never will be easy bc many throw in the white towel along the way, bc
|
26 |
+
they panic. '
|
27 |
+
pipeline_tag: text-classification
|
28 |
+
inference: false
|
29 |
+
base_model: sentence-transformers/paraphrase-mpnet-base-v2
|
30 |
---
|
31 |
+
|
32 |
+
# SetFit Polarity Model with sentence-transformers/paraphrase-mpnet-base-v2
|
33 |
+
|
34 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
|
35 |
+
|
36 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
37 |
+
|
38 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
39 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
40 |
+
|
41 |
+
This model was trained within the context of a larger system for ABSA, which looks like so:
|
42 |
+
|
43 |
+
1. Use a spaCy model to select possible aspect span candidates.
|
44 |
+
2. Use a SetFit model to filter these possible aspect span candidates.
|
45 |
+
3. **Use this SetFit model to classify the filtered aspect span candidates.**
|
46 |
+
|
47 |
+
## Model Details
|
48 |
+
|
49 |
+
### Model Description
|
50 |
+
- **Model Type:** SetFit
|
51 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
|
52 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
53 |
+
- **spaCy Model:** en_core_web_lg
|
54 |
+
- **SetFitABSA Aspect Model:** [setfit-absa-aspect](https://huggingface.co/setfit-absa-aspect)
|
55 |
+
- **SetFitABSA Polarity Model:** [NazmusAshrafi/setfit-absa-sm-stock-tweet-sentiment](https://huggingface.co/NazmusAshrafi/setfit-absa-sm-stock-tweet-sentiment)
|
56 |
+
- **Maximum Sequence Length:** 512 tokens
|
57 |
+
- **Number of Classes:** 4 classes
|
58 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
59 |
+
<!-- - **Language:** Unknown -->
|
60 |
+
<!-- - **License:** Unknown -->
|
61 |
+
|
62 |
+
### Model Sources
|
63 |
+
|
64 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
65 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
66 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
67 |
+
|
68 |
+
### Model Labels
|
69 |
+
| Label | Examples |
|
70 |
+
|:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
71 |
+
| negative | <ul><li>'But the staff was so horrible:But the staff was so horrible to us.'</li><li>'For years @WholeMarsBlog viciously silenced @Tesla:For years @WholeMarsBlog viciously silenced @Tesla critics. Failing to silence me, he desperately lashes out with childish insults about me, my company, my products - and even my His fear and impotence spurs me on to ensure that everyone understands Full Self-Driving is Apple.'</li><li>"$NIO just because I:$NIO just because I'm down money doesn't mean this is a bad investment. The whole market, everything sucks right now. 2-5 years from now, I'm confident it will pay off."</li></ul> |
|
72 |
+
| neutral | <ul><li>'-Driving is Apple.:For years @WholeMarsBlog viciously silenced @Tesla critics. Failing to silence me, he desperately lashes out with childish insults about me, my company, my products - and even my His fear and impotence spurs me on to ensure that everyone understands Full Self-Driving is Apple.'</li><li>"adopt California's rules approved in August:New York state plans to adopt California's rules approved in August that would require all new vehicles sold in the state by 2035 to be either electric or plug-in electric hybrids."</li><li>"plug-in electric hybrids.:New York state plans to adopt California's rules approved in August that would require all new vehicles sold in the state by 2035 to be either electric or plug-in electric hybrids."</li></ul> |
|
73 |
+
| positive | <ul><li>'day! #Tesla #hawaii $:This makes my day! #Tesla #hawaii $TSLA'</li><li>'@TeslaSolar roof stood up:@TeslaSolar roof stood up to #HurricaneIan with 155mph winds and storm surge! This Powerwall was underwater for hours and is still working perfectly.'</li><li>'surge! This Powerwall was underwater for:@TeslaSolar roof stood up to #HurricaneIan with 155mph winds and storm surge! This Powerwall was underwater for hours and is still working perfectly.'</li></ul> |
|
74 |
+
| neutral | <ul><li>'Investing in the stock market was and never:Investing in the stock market was and never will be easy bc many throw in the white towel along the way, bc they panic. '</li></ul> |
|
75 |
+
|
76 |
+
## Uses
|
77 |
+
|
78 |
+
### Direct Use for Inference
|
79 |
+
|
80 |
+
First install the SetFit library:
|
81 |
+
|
82 |
+
```bash
|
83 |
+
pip install setfit
|
84 |
+
```
|
85 |
+
|
86 |
+
Then you can load this model and run inference.
|
87 |
+
|
88 |
+
```python
|
89 |
+
from setfit import AbsaModel
|
90 |
+
|
91 |
+
# Download from the 🤗 Hub
|
92 |
+
model = AbsaModel.from_pretrained(
|
93 |
+
"setfit-absa-aspect",
|
94 |
+
"NazmusAshrafi/setfit-absa-sm-stock-tweet-sentiment",
|
95 |
+
)
|
96 |
+
# Run inference
|
97 |
+
preds = model("The food was great, but the venue is just way too busy.")
|
98 |
+
```
|
99 |
+
|
100 |
+
<!--
|
101 |
+
### Downstream Use
|
102 |
+
|
103 |
+
*List how someone could finetune this model on their own dataset.*
|
104 |
+
-->
|
105 |
+
|
106 |
+
<!--
|
107 |
+
### Out-of-Scope Use
|
108 |
+
|
109 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
110 |
+
-->
|
111 |
+
|
112 |
+
<!--
|
113 |
+
## Bias, Risks and Limitations
|
114 |
+
|
115 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
116 |
+
-->
|
117 |
+
|
118 |
+
<!--
|
119 |
+
### Recommendations
|
120 |
+
|
121 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
122 |
+
-->
|
123 |
+
|
124 |
+
## Training Details
|
125 |
+
|
126 |
+
### Training Set Metrics
|
127 |
+
| Training set | Min | Median | Max |
|
128 |
+
|:-------------|:----|:--------|:----|
|
129 |
+
| Word count | 10 | 33.3333 | 60 |
|
130 |
+
|
131 |
+
| Label | Training Sample Count |
|
132 |
+
|:---------|:----------------------|
|
133 |
+
| negative | 7 |
|
134 |
+
| neutral | 5 |
|
135 |
+
| neutral | 1 |
|
136 |
+
| positive | 8 |
|
137 |
+
|
138 |
+
### Training Hyperparameters
|
139 |
+
- batch_size: (16, 2)
|
140 |
+
- num_epochs: (1, 16)
|
141 |
+
- max_steps: -1
|
142 |
+
- sampling_strategy: oversampling
|
143 |
+
- body_learning_rate: (2e-05, 1e-05)
|
144 |
+
- head_learning_rate: 0.01
|
145 |
+
- loss: CosineSimilarityLoss
|
146 |
+
- distance_metric: cosine_distance
|
147 |
+
- margin: 0.25
|
148 |
+
- end_to_end: False
|
149 |
+
- use_amp: False
|
150 |
+
- warmup_proportion: 0.1
|
151 |
+
- seed: 42
|
152 |
+
- eval_max_steps: -1
|
153 |
+
- load_best_model_at_end: False
|
154 |
+
|
155 |
+
### Training Results
|
156 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
157 |
+
|:------:|:----:|:-------------:|:---------------:|
|
158 |
+
| 0.0526 | 1 | 0.1621 | - |
|
159 |
+
|
160 |
+
### Framework Versions
|
161 |
+
- Python: 3.10.12
|
162 |
+
- SetFit: 1.0.2
|
163 |
+
- Sentence Transformers: 2.2.2
|
164 |
+
- spaCy: 3.6.1
|
165 |
+
- Transformers: 4.35.2
|
166 |
+
- PyTorch: 2.1.0+cu121
|
167 |
+
- Datasets: 2.16.1
|
168 |
+
- Tokenizers: 0.15.0
|
169 |
+
|
170 |
+
## Citation
|
171 |
+
|
172 |
+
### BibTeX
|
173 |
+
```bibtex
|
174 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
175 |
+
doi = {10.48550/ARXIV.2209.11055},
|
176 |
+
url = {https://arxiv.org/abs/2209.11055},
|
177 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
178 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
179 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
180 |
+
publisher = {arXiv},
|
181 |
+
year = {2022},
|
182 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
183 |
+
}
|
184 |
+
```
|
185 |
+
|
186 |
+
<!--
|
187 |
+
## Glossary
|
188 |
+
|
189 |
+
*Clearly define terms in order to be accessible across audiences.*
|
190 |
+
-->
|
191 |
+
|
192 |
+
<!--
|
193 |
+
## Model Card Authors
|
194 |
+
|
195 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
196 |
+
-->
|
197 |
+
|
198 |
+
<!--
|
199 |
+
## Model Card Contact
|
200 |
+
|
201 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
202 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-mpnet-base-v2/",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.35.2",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"span_context": 3,
|
4 |
+
"labels": null,
|
5 |
+
"spacy_model": "en_core_web_lg"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:670152a7f8f4c1a7173ad30beb4f0bf8bec794bb0299fdca9f43f25cf0ec1015
|
3 |
+
size 437967672
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:569838fc8f958f4960735ed5c6b9d4fc1224ccb17586aa3d83ae2bfc54fcad55
|
3 |
+
size 25559
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"104": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"30526": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": true,
|
49 |
+
"eos_token": "</s>",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"model_max_length": 512,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"sep_token": "</s>",
|
55 |
+
"strip_accents": null,
|
56 |
+
"tokenize_chinese_chars": true,
|
57 |
+
"tokenizer_class": "MPNetTokenizer",
|
58 |
+
"unk_token": "[UNK]"
|
59 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|