File size: 4,348 Bytes
9257815 0121f5d 9257815 0121f5d 9257815 0121f5d 9257815 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
license: apache-2.0
tags:
- automatic-speech-recognition
- NbAiLab/NPSC
- generated_from_trainer
model-index:
- name: XLSR-300M-bokmaal
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLSR-300M-bokmaal
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the NBAILAB/NPSC - 16K_MP3_BOKMAAL dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1635
- Wer: 0.1005
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 15.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.0307 | 0.32 | 500 | 3.0026 | 1.0 |
| 2.7865 | 0.64 | 1000 | 2.4849 | 0.9926 |
| 0.7522 | 0.95 | 1500 | 0.4567 | 0.3594 |
| 0.5703 | 1.27 | 2000 | 0.3440 | 0.2586 |
| 0.4762 | 1.59 | 2500 | 0.2925 | 0.2178 |
| 0.4585 | 1.91 | 3000 | 0.2442 | 0.1981 |
| 0.4013 | 2.23 | 3500 | 0.2495 | 0.1818 |
| 0.449 | 2.54 | 4000 | 0.2152 | 0.1808 |
| 0.355 | 2.86 | 4500 | 0.2179 | 0.1670 |
| 0.3142 | 3.18 | 5000 | 0.1953 | 0.1542 |
| 0.3242 | 3.5 | 5500 | 0.2103 | 0.1526 |
| 0.3016 | 3.82 | 6000 | 0.1911 | 0.1477 |
| 0.2713 | 4.13 | 6500 | 0.1836 | 0.1422 |
| 0.2807 | 4.45 | 7000 | 0.1924 | 0.1447 |
| 0.2929 | 4.77 | 7500 | 0.1848 | 0.1402 |
| 0.2595 | 5.09 | 8000 | 0.1783 | 0.1330 |
| 0.2289 | 5.41 | 8500 | 0.1901 | 0.1313 |
| 0.2567 | 5.72 | 9000 | 0.1784 | 0.1298 |
| 0.2401 | 6.04 | 9500 | 0.1956 | 0.1298 |
| 0.2098 | 6.36 | 10000 | 0.1748 | 0.1277 |
| 0.2246 | 6.68 | 10500 | 0.1777 | 0.1254 |
| 0.2197 | 7.0 | 11000 | 0.1703 | 0.1222 |
| 0.2122 | 7.32 | 11500 | 0.1917 | 0.1221 |
| 0.2746 | 7.63 | 12000 | 0.1769 | 0.1215 |
| 0.2148 | 7.95 | 12500 | 0.1736 | 0.1193 |
| 0.1915 | 8.27 | 13000 | 0.1814 | 0.1161 |
| 0.2462 | 8.59 | 13500 | 0.1748 | 0.1166 |
| 0.1872 | 8.91 | 14000 | 0.1769 | 0.1133 |
| 0.1886 | 9.22 | 14500 | 0.1852 | 0.1143 |
| 0.1789 | 9.54 | 15000 | 0.1696 | 0.1126 |
| 0.1692 | 9.86 | 15500 | 0.1817 | 0.1122 |
| 0.1765 | 10.18 | 16000 | 0.1769 | 0.1093 |
| 0.1699 | 10.5 | 16500 | 0.1604 | 0.1084 |
| 0.1591 | 10.81 | 17000 | 0.1777 | 0.1080 |
| 0.1499 | 11.13 | 17500 | 0.1645 | 0.1074 |
| 0.163 | 11.45 | 18000 | 0.1704 | 0.1065 |
| 0.1597 | 11.77 | 18500 | 0.1576 | 0.1064 |
| 0.1484 | 12.09 | 19000 | 0.1637 | 0.1041 |
| 0.1464 | 12.4 | 19500 | 0.1631 | 0.1047 |
| 0.156 | 12.72 | 20000 | 0.1686 | 0.1029 |
| 0.1625 | 13.04 | 20500 | 0.1648 | 0.1023 |
| 0.1395 | 13.36 | 21000 | 0.1688 | 0.1027 |
| 0.1387 | 13.68 | 21500 | 0.1670 | 0.1013 |
| 0.1434 | 13.99 | 22000 | 0.1677 | 0.1017 |
| 0.1442 | 14.31 | 22500 | 0.1688 | 0.1008 |
| 0.1439 | 14.63 | 23000 | 0.1647 | 0.1004 |
| 0.137 | 14.95 | 23500 | 0.1636 | 0.1006 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|