File size: 3,094 Bytes
1aefbbf fb95525 1aefbbf c894586 1aefbbf 9e184c7 1aefbbf 9d56975 f1217e4 c7b3a99 18c34de f674b2f 1aefbbf dfa6cb5 81f8cc1 886c555 81f8cc1 dfa6cb5 81f8cc1 d016132 81f8cc1 a1c7567 9b8becd a1c7567 81f8cc1 5abdd67 1689e33 81f8cc1 0c900a7 1aefbbf 81f8cc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
language: no
license: cc-by-4.0
thumbnail: https://raw.githubusercontent.com/NBAiLab/notram/master/images/nblogo_2.png
pipeline_tag: zero-shot-classification
tags:
- nb-bert
- zero-shot-classification
- pytorch
- tensorflow
- norwegian
- bert
datasets:
- mnli
- multi_nli
- xnli
widget:
- example_title: Nyhetsartikkel om FHI
text: Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september.
candidate_labels: helse, politikk, sport, religion
- example_title: Mannen snorker
text: Man kunne høre at mannen snorket tungt.
candidate_labels: Mannen sover, Mannen reparerer bilen, Mannen er død
---
**Release 1.0** (March 11, 2021)
# NB-Bert base model finetuned on Norwegian machine translated MNLI
## Description
The most effective way of creating a good classifier is to finetune a pre-trained model for the specific task at hand. However, in many cases this is simply impossible.
[Yin et al.](https://arxiv.org/abs/1909.00161) proposed a very clever way of using pre-trained MNLI models as zero-shot sequence classifiers. The methods works by reformulating the question to an MNLI hypothesis. If we want to figure out if a text is about "sport", we simply state that "This text is about sport" ("Denne teksten handler om sport").
When the model is finetuned on the 400k large MNLI task, it is in many cases able to solve this classification tasks. There are no MNLI-set of this size in Norwegian but we have trained it on a machine translated version of the original MNLI-set.
## Testing the model
For testing the model, we recommend the [NbAiLab Colab Notebook](https://colab.research.google.com/gist/peregilk/769b5150a2f807219ab8f15dd11ea449/nbailab-mnli-norwegian-demo.ipynb)
## Hugging Face zero-shot-classification pipeline
The easiest way to try this out is by using the Hugging Face pipeline. Please, note that you will get better results when using Norwegian hypothesis template instead of the default English one.
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification", model="NbAiLab/nb-bert-base-mnli")
```
You can then use this pipeline to classify sequences into any of the class names you specify.
```python
sequence_to_classify = 'Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september.'
candidate_labels = ['politikk', 'helse', 'sport', 'religion']
hypothesis_template = 'Dette eksempelet er {}.'
classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template, multi_class=True)
# {'labels': ['helse', 'politikk', 'sport', 'religion'],
# 'scores': [0.4210019111633301, 0.0674605593085289, 0.000840459018945694, 0.0007541406666859984],
# 'sequence': 'Folkehelseinstituttets mest optimistiske anslag er at alle over 18 år er ferdigvaksinert innen midten av september.'}
```
## More information
For more information on the model, see
https://github.com/NBAiLab/notram
Here you will also find a Colab explaining more in details how to use the zero-shot-classification pipeline. |