--- language: no license: CC-BY 4.0 thumbnail: https://raw.githubusercontent.com/NBAiLab/notram/master/images/nblogo_2.png tags: - nb-bert - text-classification - pytorch - tensorflow - norwegian - bert datasets: - mnli - multi_nli - xnli pipeline_tag: zero-shot-classification widget: - text: "Dette er politikk." candidate_labels: "politikk, helse, sport, religion" hypothesis_template: "Denne teksten handler om {}." multi_class: true --- **Release 1.0** (March 11, 2021) # NB-Bert base model finetuned on Norwegian machine translated MNLI ### NOTE: The demo on the right hand side is using the English template. The results are significantly worse than what the model is able to produce. Please use the Colab from the Git linked below to test the capabilities of the model. ## Description The most effective way of creating a good classifier is to finetune a pre-trained model for the specific task at hand. However, in many cases this is simply impossible. [Yin et al.](https://arxiv.org/abs/1909.00161) proposed a very clever way of using pre-trained MNLI models as zero-shot sequence classifiers. The methods works by reformulating the question to an MNLI hypothesis. If we want to figure out if a text is about "sport", we simply state that "This text is about sport" ("Denne teksten handler om sport"). When the model is finetuned on the 400k large MNLI task, it is in many cases able to solve this classification tasks. There are no MNLI-set of this size in Norwegian but we have trained it on a machine translated version of the original MNLI-set. ## Hugging Face zero-shot-classification pipeline The easiest way to try this out is by using the Hugging Face pipeline. Please, note that you will get better results when using Norwegian hypothesis template instead of the default English one. ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="NbAiLab/nb-bert-base-mnli") ``` You can then use this pipeline to classify sequences into any of the class names you specify. ```python sequence_to_classify = 'Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september.' candidate_labels = ['politikk', 'helse', 'sport', 'religion'] hypothesis_template = 'Dette eksempelet er {}.' classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template, multi_class=True) # {'labels': ['helse', 'politikk', 'sport', 'religion'], # 'scores': [0.4210019111633301, 0.0674605593085289, 0.000840459018945694, 0.0007541406666859984], # 'sequence': 'Folkehelseinstituttets mest optimistiske anslag er at alle over 18 år er ferdigvaksinert innen midten av september.'} ``` ## More information For more information on the model, see https://github.com/NBAiLab/notram Here you will also find a Colab explaining more in details how to use the zero-shot-classification pipeline.