pere commited on
Commit
5ba903e
·
1 Parent(s): e1a3be3
Files changed (39) hide show
  1. .gitattributes +2 -0
  2. README.md +12 -13
  3. add_kenlm.py +34 -0
  4. added_tokens.json +1 -0
  5. all_results.json +14 -0
  6. alphabet.json +1 -0
  7. config.json +115 -0
  8. eval.py +151 -0
  9. eval_results.json +9 -0
  10. grid.csv +101 -0
  11. grid.py +34 -0
  12. language_model/5gram.bin +3 -0
  13. language_model/attrs.json +1 -0
  14. language_model/unigrams.txt +3 -0
  15. log_NbAiLab_NPSC_16K_mp3_bokmaal_test_eval_results.txt +3 -0
  16. log_NbAiLab_NPSC_16K_mp3_bokmaal_test_predictions.txt +3 -0
  17. log_NbAiLab_NPSC_16K_mp3_bokmaal_test_targets.txt +3 -0
  18. preprocessor_config.json +10 -0
  19. pytorch_model.bin +3 -0
  20. run.sh +39 -0
  21. run_speech_recognition_ctc.py +792 -0
  22. runs/Feb04_12-19-59_dante/1643973630.5333126/events.out.tfevents.1643973630.dante.1786377.1 +3 -0
  23. runs/Feb04_12-19-59_dante/events.out.tfevents.1643973630.dante.1786377.0 +3 -0
  24. runs/Feb05_11-55-40_dante/1644058575.319772/events.out.tfevents.1644058575.dante.2573362.1 +3 -0
  25. runs/Feb05_11-55-40_dante/events.out.tfevents.1644058575.dante.2573362.0 +3 -0
  26. runs/Feb05_11-55-40_dante/events.out.tfevents.1644066583.dante.2573362.2 +3 -0
  27. runs/Feb06_00-33-18_dante/1644104059.4582894/events.out.tfevents.1644104059.dante.2706942.1 +3 -0
  28. runs/Feb06_00-33-18_dante/events.out.tfevents.1644104059.dante.2706942.0 +3 -0
  29. runs/Feb06_12-59-06_dante/1644148807.511835/events.out.tfevents.1644148807.dante.2790531.1 +3 -0
  30. runs/Feb06_12-59-06_dante/events.out.tfevents.1644148807.dante.2790531.0 +3 -0
  31. runs/Feb06_13-01-43_dante/1644148960.1271484/events.out.tfevents.1644148960.dante.2793694.1 +3 -0
  32. runs/Feb06_13-01-43_dante/events.out.tfevents.1644148960.dante.2793694.0 +3 -0
  33. runs/Feb06_13-01-43_dante/events.out.tfevents.1644149411.dante.2793694.2 +3 -0
  34. special_tokens_map.json +1 -0
  35. tokenizer_config.json +1 -0
  36. train_results.json +8 -0
  37. trainer_state.json +217 -0
  38. training_args.bin +3 -0
  39. vocab.json +1 -0
.gitattributes CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *unigram*.* filter=lfs diff=lfs merge=lfs -text
29
+ *.txt filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -63,16 +63,16 @@ As you see from the results above, adding even a simple 5-gram language will imp
63
  ### Parameters
64
  The final model was run using these parameters:
65
  ```
66
- --dataset_name="NbAiLab/NPSC"
67
- --model_name_or_path="facebook/wav2vec2-xls-r-1b"
68
- --dataset_config_name="16K_mp3_bokmaal"
69
- --output_dir="./"
70
- --overwrite_output_dir
71
- --num_train_epochs="40"
72
- --per_device_train_batch_size="12"
73
- --per_device_eval_batch_size="12"
74
  --gradient_accumulation_steps="2"
75
- --learning_rate="2e-5"
76
  --warmup_steps="2000"
77
  --length_column_name="input_length"
78
  --evaluation_strategy="steps"
@@ -84,24 +84,23 @@ The final model was run using these parameters:
84
  --attention_dropout="0.094"
85
  --activation_dropout="0.055"
86
  --hidden_dropout="0.047"
87
- --save_total_limit="3"
88
  --freeze_feature_encoder
89
  --feat_proj_dropout="0.04"
90
  --mask_time_prob="0.082"
91
  --mask_time_length="10"
92
  --mask_feature_prob="0.25"
93
  --mask_feature_length="64"
94
- --gradient_checkpointing
95
  --min_duration_in_seconds="0.5"
96
  --max_duration_in_seconds="30.0"
97
- --ctc_zero_infinity=True
98
  --use_auth_token
99
  --seed="42"
100
  --fp16
101
  --group_by_length
102
  --do_train --do_eval
103
  --push_to_hub
104
- --preprocessing_num_workers="16"
105
  ```
106
 
107
  Following this settings, the training might take 3-4 days on an average GPU. You should however get a decent model and faster results by tweaking these parameters
 
63
  ### Parameters
64
  The final model was run using these parameters:
65
  ```
66
+ --dataset_name="NbAiLab/NPSC"
67
+ --model_name_or_path="KBLab/wav2vec2-large-voxrex"
68
+ --dataset_config_name="16K_mp3_bokmaal"
69
+ --output_dir="./"
70
+ --overwrite_output_dir
71
+ --num_train_epochs="15"
72
+ --per_device_train_batch_size="16"
73
+ --per_device_eval_batch_size="16"
74
  --gradient_accumulation_steps="2"
75
+ --learning_rate="1e-4"
76
  --warmup_steps="2000"
77
  --length_column_name="input_length"
78
  --evaluation_strategy="steps"
 
84
  --attention_dropout="0.094"
85
  --activation_dropout="0.055"
86
  --hidden_dropout="0.047"
87
+ --save_total_limit="3"
88
  --freeze_feature_encoder
89
  --feat_proj_dropout="0.04"
90
  --mask_time_prob="0.082"
91
  --mask_time_length="10"
92
  --mask_feature_prob="0.25"
93
  --mask_feature_length="64"
94
+ --gradient_checkpointing
95
  --min_duration_in_seconds="0.5"
96
  --max_duration_in_seconds="30.0"
 
97
  --use_auth_token
98
  --seed="42"
99
  --fp16
100
  --group_by_length
101
  --do_train --do_eval
102
  --push_to_hub
103
+ --preprocessing_num_workers="32"
104
  ```
105
 
106
  Following this settings, the training might take 3-4 days on an average GPU. You should however get a decent model and faster results by tweaking these parameters
add_kenlm.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from transformers import AutoProcessor
3
+ from transformers import Wav2Vec2ProcessorWithLM
4
+ from pyctcdecode import build_ctcdecoder
5
+
6
+
7
+ def main(args):
8
+ processor = AutoProcessor.from_pretrained(args.model_name_or_path)
9
+ vocab_dict = processor.tokenizer.get_vocab()
10
+ sorted_vocab_dict = {
11
+ k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])
12
+ }
13
+ decoder = build_ctcdecoder(
14
+ labels=list(sorted_vocab_dict.keys()),
15
+ kenlm_model_path=args.kenlm_model_path,
16
+ )
17
+ processor_with_lm = Wav2Vec2ProcessorWithLM(
18
+ feature_extractor=processor.feature_extractor,
19
+ tokenizer=processor.tokenizer,
20
+ decoder=decoder,
21
+ )
22
+ processor_with_lm.save_pretrained(args.model_name_or_path)
23
+ print(f"Run: ~/bin/build_binary language_model/*.arpa language_model/5gram.bin -T $(pwd) && rm language_model/*.arpa")
24
+
25
+ def parse_args():
26
+ parser = argparse.ArgumentParser()
27
+ parser.add_argument('--model_name_or_path', default="./", help='Model name or path. Defaults to ./')
28
+ parser.add_argument('--kenlm_model_path', required=True, help='Path to KenLM arpa file.')
29
+ args = parser.parse_args()
30
+ return args
31
+
32
+ if __name__ == "__main__":
33
+ args = parse_args()
34
+ main(args)
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<s>": 32, "</s>": 33}
all_results.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.5,
3
+ "eval_loss": 0.12273009121417999,
4
+ "eval_runtime": 399.7312,
5
+ "eval_samples": 5437,
6
+ "eval_samples_per_second": 13.602,
7
+ "eval_steps_per_second": 0.851,
8
+ "eval_wer": 0.0989537882279114,
9
+ "train_loss": 0.0,
10
+ "train_runtime": 5.9011,
11
+ "train_samples": 49645,
12
+ "train_samples_per_second": 841.279,
13
+ "train_steps_per_second": 26.436
14
+ }
alphabet.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"labels": [" ", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "\u00e5", "\u00e6", "\u00f8", "\u2047", "", "<s>", "</s>"], "is_bpe": false}
config.json ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./",
3
+ "activation_dropout": 0.055,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForCTC"
10
+ ],
11
+ "attention_dropout": 0.094,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 768,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": true,
17
+ "conv_dim": [
18
+ 512,
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512
25
+ ],
26
+ "conv_kernel": [
27
+ 10,
28
+ 3,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 2,
33
+ 2
34
+ ],
35
+ "conv_stride": [
36
+ 5,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2
43
+ ],
44
+ "ctc_loss_reduction": "mean",
45
+ "ctc_zero_infinity": true,
46
+ "diversity_loss_weight": 0.1,
47
+ "do_stable_layer_norm": true,
48
+ "eos_token_id": 2,
49
+ "feat_extract_activation": "gelu",
50
+ "feat_extract_dropout": 0.0,
51
+ "feat_extract_norm": "layer",
52
+ "feat_proj_dropout": 0.04,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.0,
55
+ "hidden_act": "gelu",
56
+ "hidden_dropout": 0.047,
57
+ "hidden_size": 1024,
58
+ "initializer_range": 0.02,
59
+ "intermediate_size": 4096,
60
+ "layer_norm_eps": 1e-05,
61
+ "layerdrop": 0.041,
62
+ "mask_channel_length": 10,
63
+ "mask_channel_min_space": 1,
64
+ "mask_channel_other": 0.0,
65
+ "mask_channel_prob": 0.0,
66
+ "mask_channel_selection": "static",
67
+ "mask_feature_length": 64,
68
+ "mask_feature_min_masks": 0,
69
+ "mask_feature_prob": 0.25,
70
+ "mask_time_length": 10,
71
+ "mask_time_min_masks": 2,
72
+ "mask_time_min_space": 1,
73
+ "mask_time_other": 0.0,
74
+ "mask_time_prob": 0.082,
75
+ "mask_time_selection": "static",
76
+ "model_type": "wav2vec2",
77
+ "num_adapter_layers": 3,
78
+ "num_attention_heads": 16,
79
+ "num_codevector_groups": 2,
80
+ "num_codevectors_per_group": 320,
81
+ "num_conv_pos_embedding_groups": 16,
82
+ "num_conv_pos_embeddings": 128,
83
+ "num_feat_extract_layers": 7,
84
+ "num_hidden_layers": 24,
85
+ "num_negatives": 100,
86
+ "output_hidden_size": 1024,
87
+ "pad_token_id": 31,
88
+ "proj_codevector_dim": 768,
89
+ "tdnn_dilation": [
90
+ 1,
91
+ 2,
92
+ 3,
93
+ 1,
94
+ 1
95
+ ],
96
+ "tdnn_dim": [
97
+ 512,
98
+ 512,
99
+ 512,
100
+ 512,
101
+ 1500
102
+ ],
103
+ "tdnn_kernel": [
104
+ 5,
105
+ 3,
106
+ 3,
107
+ 1,
108
+ 1
109
+ ],
110
+ "torch_dtype": "float32",
111
+ "transformers_version": "4.17.0.dev0",
112
+ "use_weighted_layer_sum": false,
113
+ "vocab_size": 34,
114
+ "xvector_output_dim": 512
115
+ }
eval.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import argparse
3
+ import re
4
+ from typing import Dict
5
+
6
+ import torch
7
+ from datasets import Audio, Dataset, load_dataset, load_metric
8
+
9
+ from transformers import AutoFeatureExtractor, pipeline
10
+
11
+
12
+ def log_results(result: Dataset, args: Dict[str, str]):
13
+ """DO NOT CHANGE. This function computes and logs the result metrics."""
14
+
15
+ log_outputs = args.log_outputs
16
+ dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
17
+
18
+ # load metric
19
+ wer = load_metric("wer")
20
+ cer = load_metric("cer")
21
+
22
+ # compute metrics
23
+ wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
24
+ cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
25
+
26
+ # print & log results
27
+ result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
28
+ print(result_str)
29
+
30
+ with open(f"{dataset_id}_eval_results.txt", "w") as f:
31
+ f.write(result_str)
32
+
33
+ # log all results in text file. Possibly interesting for analysis
34
+ if log_outputs is not None:
35
+ pred_file = f"log_{dataset_id}_predictions.txt"
36
+ target_file = f"log_{dataset_id}_targets.txt"
37
+
38
+ with open(pred_file, "w") as p, open(target_file, "w") as t:
39
+
40
+ # mapping function to write output
41
+ def write_to_file(batch, i):
42
+ p.write(f"{i}" + "\n")
43
+ p.write(batch["prediction"] + "\n")
44
+ t.write(f"{i}" + "\n")
45
+ t.write(batch["target"] + "\n")
46
+
47
+ result.map(write_to_file, with_indices=True)
48
+
49
+
50
+ def normalize_text(text: str) -> str:
51
+ """DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
52
+
53
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\–\_\\\+\#\/]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
54
+
55
+ text = re.sub(chars_to_ignore_regex, "", text.lower()) + " "
56
+ text = re.sub('[áàâ]', 'a', text)
57
+ text = re.sub('[ä]', 'æ', text)
58
+ text = re.sub('[éèëê]', 'e', text)
59
+ text = re.sub('[íìïî]', 'i', text)
60
+ text = re.sub('[óòöô]', 'o', text)
61
+ text = re.sub('[ö]', 'ø', text)
62
+ text = re.sub('[ç]', 'c', text)
63
+ text = re.sub('[úùüû]', 'u', text)
64
+ text = re.sub('\s', ' ', text)
65
+ text = re.sub('<ee>', 'eee', text)
66
+ text = re.sub('<qq>', 'qqq', text)
67
+ text = re.sub('<mm>', 'mmm', text)
68
+ text = re.sub('<inaudible>', 'xxx', text)
69
+ text = re.sub('[<>]', '', text)
70
+
71
+ # # In addition, we can normalize the target text, e.g. removing new lines characters etc...
72
+ # # note that order is important here!
73
+ # token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
74
+
75
+ # for t in token_sequences_to_ignore:
76
+ # text = " ".join(text.split(t))
77
+
78
+ return text
79
+
80
+
81
+ def main(args):
82
+ # load dataset
83
+ dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
84
+
85
+ # for testing: only process the first two examples as a test
86
+ # dataset = dataset.select(range(10))
87
+
88
+ # load processor
89
+ feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
90
+ sampling_rate = feature_extractor.sampling_rate
91
+
92
+ # resample audio
93
+ dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
94
+
95
+ # load eval pipeline
96
+ if args.device is None:
97
+ args.device = 0 if torch.cuda.is_available() else -1
98
+ asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
99
+
100
+ # map function to decode audio
101
+ def map_to_pred(batch):
102
+ prediction = asr(
103
+ batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
104
+ )
105
+
106
+ batch["prediction"] = prediction["text"]
107
+ batch["target"] = normalize_text(batch["text"])
108
+ return batch
109
+
110
+ # run inference on all examples
111
+ result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
112
+
113
+ # compute and log_results
114
+ # do not change function below
115
+ log_results(result, args)
116
+
117
+
118
+ if __name__ == "__main__":
119
+ parser = argparse.ArgumentParser()
120
+
121
+ parser.add_argument(
122
+ "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
123
+ )
124
+ parser.add_argument(
125
+ "--dataset",
126
+ type=str,
127
+ required=True,
128
+ help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
129
+ )
130
+ parser.add_argument(
131
+ "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
132
+ )
133
+ parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
134
+ parser.add_argument(
135
+ "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
136
+ )
137
+ parser.add_argument(
138
+ "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
139
+ )
140
+ parser.add_argument(
141
+ "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
142
+ )
143
+ parser.add_argument(
144
+ "--device",
145
+ type=int,
146
+ default=None,
147
+ help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
148
+ )
149
+ args = parser.parse_args()
150
+
151
+ main(args)
eval_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.5,
3
+ "eval_loss": 0.12273009121417999,
4
+ "eval_runtime": 399.7312,
5
+ "eval_samples": 5437,
6
+ "eval_samples_per_second": 13.602,
7
+ "eval_steps_per_second": 0.851,
8
+ "eval_wer": 0.0989537882279114
9
+ }
grid.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ alpha,beta,wer,cer
2
+ 0.001,0.001,0.09547085935319984,0.029674778514815793
3
+ 0.001,0.01,0.09553821432351554,0.029683084728361897
4
+ 0.001,0.1,0.09571141281861306,0.029724615796092424
5
+ 0.001,0.25,0.096019321254342,0.029746211951312298
6
+ 0.001,0.5,0.0972509549972577,0.029950544804546488
7
+ 0.001,0.75,0.09849221087878993,0.030179796298418996
8
+ 0.001,1,0.09977195531478826,0.030379145423525523
9
+ 0.001,1.5,0.1028799060879271,0.03088914693525639
10
+ 0.001,2,0.10715213563366593,0.031522080407469615
11
+ 0.001,3,0.1189200111616808,0.03319495181565522
12
+ 0.01,0.001,0.09309419111491721,0.02945051074907095
13
+ 0.01,0.01,0.09311343539215026,0.029443865778234067
14
+ 0.01,0.1,0.09344058810511224,0.02948373560325537
15
+ 0.01,0.25,0.09395056145178828,0.029523605428276676
16
+ 0.01,0.5,0.09508597380853868,0.02965816608772358
17
+ 0.01,0.75,0.0962887411356048,0.029847547756574784
18
+ 0.01,1,0.09774168406670067,0.030105040376504046
19
+ 0.01,1.5,0.1008496348398395,0.030596768218433483
20
+ 0.01,2,0.10507375369249569,0.031251297845866575
21
+ 0.01,3,0.11661069789371385,0.03288928315715854
22
+ 0.1,0.001,0.08018128109153541,0.027892265087821597
23
+ 0.1,0.01,0.08017165895291888,0.027895587573240038
24
+ 0.1,0.1,0.0802775024777007,0.027907216272204584
25
+ 0.1,0.25,0.0806142773292792,0.027893926330530817
26
+ 0.1,0.5,0.08166309043848086,0.028045099417069935
27
+ 0.1,0.75,0.08281774707246432,0.028191288775481386
28
+ 0.1,1,0.08378958307273375,0.02827435091094244
29
+ 0.1,1.5,0.08655113685567754,0.028596631996531324
30
+ 0.1,2,0.08970719832189902,0.02901194267383659
31
+ 0.1,3,0.09869427578973702,0.03040738654958228
32
+ 0.25,0.001,0.07359973827782963,0.027008483966515992
33
+ 0.25,0.01,0.07358049400059657,0.027008483966515992
34
+ 0.25,0.1,0.07362860469367921,0.026993532782133
35
+ 0.25,0.25,0.07380180318877674,0.026963630413367023
36
+ 0.25,0.5,0.07414820017897178,0.02695698544253014
37
+ 0.25,0.75,0.07442724219885112,0.02695698544253014
38
+ 0.25,1,0.07499494837722633,0.027063304975920285
39
+ 0.25,1.5,0.07606300576366103,0.027172946994728876
40
+ 0.25,2,0.07761217008092218,0.027242719188516163
41
+ 0.25,3,0.08315452192404284,0.02800689083475785
42
+ 0.5,0.001,0.07044367681160815,0.026963630413367023
43
+ 0.5,0.01,0.0704244325343751,0.02695532419982092
44
+ 0.5,0.1,0.07028972259374369,0.026870600821650645
45
+ 0.5,0.25,0.07050140964330733,0.02688222952061519
46
+ 0.5,0.5,0.07065536386117179,0.026905486918544285
47
+ 0.5,0.75,0.07108836009891559,0.02694037301543793
48
+ 0.5,1,0.07091516160381807,0.026809134841409465
49
+ 0.5,1.5,0.0711942036236974,0.026624736900685928
50
+ 0.5,2,0.07201208540610236,0.026729395191366852
51
+ 0.5,3,0.0740904673472726,0.026917115617508834
52
+ 0.75,0.001,0.07321485273316847,0.02827767339636088
53
+ 0.75,0.01,0.07318598631731889,0.028264383454687115
54
+ 0.75,0.1,0.07289732215882302,0.028197933746318272
55
+ 0.75,0.25,0.07285883360435691,0.028173015105679954
56
+ 0.75,0.5,0.07246432592107922,0.02800855207746707
57
+ 0.75,0.75,0.07206981823780154,0.027877313903438606
58
+ 0.75,1,0.07177153194068914,0.027717834603353385
59
+ 0.75,1.5,0.07124231431678005,0.02735069996461553
60
+ 0.75,2,0.07131929142571228,0.027231090489551614
61
+ 0.75,3,0.07209868465365112,0.027249364159353046
62
+ 1,0.001,0.08050843380449739,0.030586800762178155
63
+ 1,0.01,0.08048918952726433,0.030598429461142704
64
+ 1,0.1,0.08019090323015193,0.03053197975277386
65
+ 1,0.25,0.07958470849731061,0.03034758181205032
66
+ 1,0.5,0.07864173891289078,0.030065170551482744
67
+ 1,0.75,0.07811252128898169,0.029845886513865563
68
+ 1,1,0.07759292580368912,0.029613312534574613
69
+ 1,1.5,0.07614960501120979,0.029111617236389855
70
+ 1,2,0.07533172322880484,0.0288076098206024
71
+ 1,3,0.07439837578300153,0.028271028425523998
72
+ 1.5,0.001,0.10399607416744445,0.035783167956621634
73
+ 1.5,0.01,0.10393834133574528,0.03576987801494786
74
+ 1.5,0.1,0.10341874585045273,0.0356070762294442
75
+ 1.5,0.25,0.10243728771156678,0.035369518522025585
76
+ 1.5,0.5,0.10124414252311718,0.035130299571897755
77
+ 1.5,0.75,0.1000798637505172,0.03490270932073447
78
+ 1.5,1,0.09854032157187256,0.034550525866379606
79
+ 1.5,1.5,0.09586536703647752,0.03397573588898912
80
+ 1.5,2,0.09308456897630067,0.03324811158235029
81
+ 1.5,3,0.08891818295534365,0.032244720985980774
82
+ 2,0.001,0.12878270324362293,0.040386471503873186
83
+ 2,0.01,0.1287730811050064,0.04037650404761786
84
+ 2,0.1,0.12826310775833036,0.04026520078610005
85
+ 2,0.25,0.12718542823327914,0.040067512903702744
86
+ 2,0.5,0.1253187333416725,0.03970037826496489
87
+ 2,0.75,0.1241833209849221,0.03952096405236902
88
+ 2,1,0.12279773302414194,0.03930500250017028
89
+ 2,1.5,0.11951658375590558,0.0386836977269216
90
+ 2,2,0.11614883524012047,0.03804578052658071
91
+ 2,3,0.11092401397134527,0.03697760146455157
92
+ 3,0.001,0.15472398895378486,0.04477547474163523
93
+ 3,0.01,0.15461814542900304,0.04474889485828769
94
+ 3,0.1,0.15435834768635676,0.04472895994577704
95
+ 3,0.25,0.15378101936936503,0.044596060529039354
96
+ 3,0.5,0.1530016261414262,0.0444498711706279
97
+ 3,0.75,0.15221261077487083,0.04431863299659944
98
+ 3,1,0.15129850760630056,0.04415416996838655
99
+ 3,1.5,0.14928748063544603,0.04384351758176221
100
+ 3,2,0.14715136586257663,0.04347472170031514
101
+ 3,3,0.14315817833671712,0.042783644733279176
grid.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ from argparse import ArgumentDefaultsHelpFormatter
3
+ from collections import namedtuple
4
+ from functools import partialmethod
5
+ import json
6
+
7
+ from tqdm import tqdm
8
+ from eval import main
9
+
10
+
11
+ # tqdm.__init__ = partialmethod(tqdm.__init__, disable=True)
12
+
13
+ Args = namedtuple("Args", "model_id dataset config split log_outputs chunk_length_s stride_length_s device")
14
+ args = Args("./", "NbAiLab/NPSC", "16K_mp3_bokmaal", "test", True, None, None, 0)
15
+ with open("grid.csv", "w") as grid:
16
+ grid.write("alpha,beta,wer,cer")
17
+ for alpha in [0.001, 0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 3]:
18
+ for beta in [0.001, 0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 3]:
19
+ with open("./language_model/attrs.json", "r") as attrs_file:
20
+ attrs = json.load(attrs_file)
21
+ attrs["alpha"] = alpha
22
+ attrs["beta"] = beta
23
+ with open("./language_model/attrs.json", "w") as attrs_file:
24
+ json.dump(attrs, attrs_file)
25
+ print(f"alpha = {alpha}, beta = {beta}")
26
+ main(args)
27
+ with open("NbAiLab_NPSC_16K_mp3_bokmaal_test_eval_results.txt") as results_file:
28
+ results = results_file.read().strip().split("\n")
29
+ wer = float(results[0][5:])
30
+ cer = float(results[1][5:])
31
+ grid.write(f"\n{alpha},{beta},{wer},{cer}")
32
+ print("--------------")
33
+
34
+
language_model/5gram.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b41c24c63f2f0585bea83666369593f3b3e6d047f327a90f36ebca2c35ef0ff
3
+ size 4243671427
language_model/attrs.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"alpha": 0.5, "beta": 0.1, "unk_score_offset": -10.0, "score_boundary": true}
language_model/unigrams.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac3e71ca49838ca355df6fdcb8d89344a5a9bf9e1a76587cdf5df1367c19b9a9
3
+ size 16759269
log_NbAiLab_NPSC_16K_mp3_bokmaal_test_eval_results.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1ee0d706882f015034b183fde35453b0c0c02f69e5143fb9fc329780fea0f27
3
+ size 50
log_NbAiLab_NPSC_16K_mp3_bokmaal_test_predictions.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60928a28777980ce5e8abb4fed8c3b823135c1e5b5247c6b7dfdde0435440d08
3
+ size 644626
log_NbAiLab_NPSC_16K_mp3_bokmaal_test_targets.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7e27a71ec76c0ded0b0cf852b9d42c620e1c5863bcf9a06fcbbbbd924e9d1b9
3
+ size 654671
preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "processor_class": "Wav2Vec2ProcessorWithLM",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000
10
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:146aae60aca5aad96c2d676908ba62300d18e34ec2cc31c921f29458eacbf2a7
3
+ size 1262063089
run.sh ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ python run_speech_recognition_ctc.py \
2
+ --dataset_name="NbAiLab/NPSC" \
3
+ --model_name_or_path="KBLab/wav2vec2-large-voxrex" \
4
+ --dataset_config_name="16K_mp3" \
5
+ --output_dir="./" \
6
+ --overwrite_output_dir \
7
+ --num_train_epochs="15" \
8
+ --per_device_train_batch_size="16" \
9
+ --per_device_eval_batch_size="16" \
10
+ --gradient_accumulation_steps="2" \
11
+ --learning_rate="1e-4" \
12
+ --warmup_steps="2000" \
13
+ --length_column_name="input_length" \
14
+ --evaluation_strategy="steps" \
15
+ --text_column_name="text" \
16
+ --save_steps="500" \
17
+ --eval_steps="500" \
18
+ --logging_steps="100" \
19
+ --layerdrop="0.041" \
20
+ --attention_dropout="0.094" \
21
+ --activation_dropout="0.055" \
22
+ --hidden_dropout="0.047" \
23
+ --save_total_limit="3" \
24
+ --freeze_feature_encoder \
25
+ --feat_proj_dropout="0.04" \
26
+ --mask_time_prob="0.082" \
27
+ --mask_time_length="10" \
28
+ --mask_feature_prob="0.25" \
29
+ --mask_feature_length="64" \
30
+ --gradient_checkpointing \
31
+ --min_duration_in_seconds="0.5" \
32
+ --max_duration_in_seconds="30.0" \
33
+ --use_auth_token \
34
+ --seed="42" \
35
+ --fp16 \
36
+ --group_by_length \
37
+ --do_train --do_eval \
38
+ --push_to_hub \
39
+ --preprocessing_num_workers="32"
run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,792 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
+
18
+ import functools
19
+ import json
20
+ import logging
21
+ import os
22
+ import re
23
+ import sys
24
+ import warnings
25
+ from dataclasses import dataclass, field
26
+ from typing import Dict, List, Optional, Union
27
+
28
+ import datasets
29
+ import numpy as np
30
+ import torch
31
+ from datasets import DatasetDict, load_dataset, load_metric
32
+
33
+ import transformers
34
+ from transformers import (
35
+ AutoConfig,
36
+ AutoFeatureExtractor,
37
+ AutoModelForCTC,
38
+ AutoProcessor,
39
+ AutoTokenizer,
40
+ HfArgumentParser,
41
+ Trainer,
42
+ TrainingArguments,
43
+ Wav2Vec2Processor,
44
+ set_seed,
45
+ )
46
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
+ from transformers.utils import check_min_version
48
+ from transformers.utils.versions import require_version
49
+
50
+
51
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
52
+ check_min_version("4.16.0.dev0")
53
+
54
+ require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
55
+
56
+
57
+ logger = logging.getLogger(__name__)
58
+
59
+
60
+ def list_field(default=None, metadata=None):
61
+ return field(default_factory=lambda: default, metadata=metadata)
62
+
63
+
64
+ @dataclass
65
+ class ModelArguments:
66
+ """
67
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
68
+ """
69
+
70
+ model_name_or_path: str = field(
71
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
72
+ )
73
+ tokenizer_name_or_path: Optional[str] = field(
74
+ default=None,
75
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
76
+ )
77
+ cache_dir: Optional[str] = field(
78
+ default=None,
79
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
80
+ )
81
+ freeze_feature_encoder: bool = field(
82
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
83
+ )
84
+ attention_dropout: float = field(
85
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
86
+ )
87
+ activation_dropout: float = field(
88
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
89
+ )
90
+ feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
91
+ hidden_dropout: float = field(
92
+ default=0.0,
93
+ metadata={
94
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
95
+ },
96
+ )
97
+ final_dropout: float = field(
98
+ default=0.0,
99
+ metadata={"help": "The dropout probability for the final projection layer."},
100
+ )
101
+ mask_time_prob: float = field(
102
+ default=0.05,
103
+ metadata={
104
+ "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
105
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
106
+ "vectors will be masked along the time axis."
107
+ },
108
+ )
109
+ mask_time_length: int = field(
110
+ default=10,
111
+ metadata={"help": "Length of vector span to mask along the time axis."},
112
+ )
113
+ mask_feature_prob: float = field(
114
+ default=0.0,
115
+ metadata={
116
+ "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
117
+ "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
118
+ },
119
+ )
120
+ mask_feature_length: int = field(
121
+ default=10,
122
+ metadata={"help": "Length of vector span to mask along the feature axis."},
123
+ )
124
+ layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
125
+ ctc_loss_reduction: Optional[str] = field(
126
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
127
+ )
128
+ ctc_zero_infinity: Optional[bool] = field(
129
+ default=False, metadata={"help": "If True, will try yo aboud the CTC loss goinf to infinity."}
130
+ )
131
+
132
+ @dataclass
133
+ class DataTrainingArguments:
134
+ """
135
+ Arguments pertaining to what data we are going to input our model for training and eval.
136
+
137
+ Using `HfArgumentParser` we can turn this class
138
+ into argparse arguments to be able to specify them on
139
+ the command line.
140
+ """
141
+
142
+ dataset_name: str = field(
143
+ metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
144
+ )
145
+ dataset_config_name: str = field(
146
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
147
+ )
148
+ train_split_name: str = field(
149
+ default="train+validation",
150
+ metadata={
151
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
152
+ },
153
+ )
154
+ eval_split_name: str = field(
155
+ default="test",
156
+ metadata={
157
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
158
+ },
159
+ )
160
+ audio_column_name: str = field(
161
+ default="audio",
162
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
163
+ )
164
+ text_column_name: str = field(
165
+ default="text",
166
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
167
+ )
168
+ overwrite_cache: bool = field(
169
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
170
+ )
171
+ preprocessing_num_workers: Optional[int] = field(
172
+ default=None,
173
+ metadata={"help": "The number of processes to use for the preprocessing."},
174
+ )
175
+ max_train_samples: Optional[int] = field(
176
+ default=None,
177
+ metadata={
178
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
179
+ "value if set."
180
+ },
181
+ )
182
+ max_eval_samples: Optional[int] = field(
183
+ default=None,
184
+ metadata={
185
+ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
186
+ "value if set."
187
+ },
188
+ )
189
+ chars_to_ignore: Optional[List[str]] = list_field(
190
+ default=None,
191
+ metadata={"help": "A list of characters to remove from the transcripts."},
192
+ )
193
+ eval_metrics: List[str] = list_field(
194
+ default=["wer"],
195
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
196
+ )
197
+ max_duration_in_seconds: float = field(
198
+ default=20.0,
199
+ metadata={
200
+ "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
201
+ },
202
+ )
203
+ min_duration_in_seconds: float = field(
204
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
205
+ )
206
+ preprocessing_only: bool = field(
207
+ default=False,
208
+ metadata={
209
+ "help": "Whether to only do data preprocessing and skip training. "
210
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
211
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
212
+ "so that the cached datasets can consequently be loaded in distributed training"
213
+ },
214
+ )
215
+ use_auth_token: bool = field(
216
+ default=False,
217
+ metadata={
218
+ "help": "If :obj:`True`, will use the token generated when running"
219
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
220
+ },
221
+ )
222
+ unk_token: str = field(
223
+ default="[UNK]",
224
+ metadata={"help": "The unk token for the tokenizer"},
225
+ )
226
+ pad_token: str = field(
227
+ default="[PAD]",
228
+ metadata={"help": "The padding token for the tokenizer"},
229
+ )
230
+ word_delimiter_token: str = field(
231
+ default="|",
232
+ metadata={"help": "The word delimiter token for the tokenizer"},
233
+ )
234
+ phoneme_language: Optional[str] = field(
235
+ default=None,
236
+ metadata={
237
+ "help": "The target language that should be used be"
238
+ " passed to the tokenizer for tokenization. Note that"
239
+ " this is only relevant if the model classifies the"
240
+ " input audio to a sequence of phoneme sequences."
241
+ },
242
+ )
243
+
244
+
245
+ @dataclass
246
+ class DataCollatorCTCWithPadding:
247
+ """
248
+ Data collator that will dynamically pad the inputs received.
249
+ Args:
250
+ processor (:class:`~transformers.AutoProcessor`)
251
+ The processor used for proccessing the data.
252
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
253
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
254
+ among:
255
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
256
+ sequence if provided).
257
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
258
+ maximum acceptable input length for the model if that argument is not provided.
259
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
260
+ different lengths).
261
+ max_length (:obj:`int`, `optional`):
262
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
263
+ max_length_labels (:obj:`int`, `optional`):
264
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
265
+ pad_to_multiple_of (:obj:`int`, `optional`):
266
+ If set will pad the sequence to a multiple of the provided value.
267
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
268
+ 7.5 (Volta).
269
+ """
270
+
271
+ processor: AutoProcessor
272
+ padding: Union[bool, str] = "longest"
273
+ pad_to_multiple_of: Optional[int] = None
274
+ pad_to_multiple_of_labels: Optional[int] = None
275
+
276
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
277
+ # split inputs and labels since they have to be of different lenghts and need
278
+ # different padding methods
279
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
280
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
281
+
282
+ batch = self.processor.pad(
283
+ input_features,
284
+ padding=self.padding,
285
+ pad_to_multiple_of=self.pad_to_multiple_of,
286
+ return_tensors="pt",
287
+ )
288
+
289
+ with self.processor.as_target_processor():
290
+ labels_batch = self.processor.pad(
291
+ label_features,
292
+ padding=self.padding,
293
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
294
+ return_tensors="pt",
295
+ )
296
+
297
+ # replace padding with -100 to ignore loss correctly
298
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
299
+
300
+ batch["labels"] = labels
301
+
302
+ return batch
303
+
304
+
305
+ def create_vocabulary_from_data(
306
+ datasets: DatasetDict,
307
+ word_delimiter_token: Optional[str] = None,
308
+ unk_token: Optional[str] = None,
309
+ pad_token: Optional[str] = None,
310
+ ):
311
+ # Given training and test labels create vocabulary
312
+ def extract_all_chars(batch):
313
+ all_text = " ".join(batch["target_text"])
314
+ vocab = list(set(all_text))
315
+ return {"vocab": [vocab], "all_text": [all_text]}
316
+
317
+ vocabs = datasets.map(
318
+ extract_all_chars,
319
+ batched=True,
320
+ batch_size=-1,
321
+ keep_in_memory=True,
322
+ remove_columns=datasets["train"].column_names,
323
+ )
324
+
325
+ # take union of all unique characters in each dataset
326
+ vocab_set = functools.reduce(
327
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
328
+ )
329
+
330
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
331
+
332
+ # replace white space with delimiter token
333
+ if word_delimiter_token is not None:
334
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
335
+ del vocab_dict[" "]
336
+
337
+ # add unk and pad token
338
+ if unk_token is not None:
339
+ vocab_dict[unk_token] = len(vocab_dict)
340
+
341
+ if pad_token is not None:
342
+ vocab_dict[pad_token] = len(vocab_dict)
343
+
344
+ return vocab_dict
345
+
346
+
347
+ def main():
348
+ # See all possible arguments in src/transformers/training_args.py
349
+ # or by passing the --help flag to this script.
350
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
351
+
352
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
353
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
354
+ # If we pass only one argument to the script and it's the path to a json file,
355
+ # let's parse it to get our arguments.
356
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
357
+ else:
358
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
359
+
360
+ # Detecting last checkpoint.
361
+ last_checkpoint = None
362
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
363
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
364
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
365
+ raise ValueError(
366
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
367
+ "Use --overwrite_output_dir to overcome."
368
+ )
369
+ elif last_checkpoint is not None:
370
+ logger.info(
371
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
372
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
373
+ )
374
+
375
+ # Setup logging
376
+ logging.basicConfig(
377
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
378
+ datefmt="%m/%d/%Y %H:%M:%S",
379
+ handlers=[logging.StreamHandler(sys.stdout)],
380
+ )
381
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
382
+
383
+ # Log on each process the small summary:
384
+ logger.warning(
385
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
386
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
387
+ )
388
+ # Set the verbosity to info of the Transformers logger (on main process only):
389
+ if is_main_process(training_args.local_rank):
390
+ transformers.utils.logging.set_verbosity_info()
391
+ logger.info("Training/evaluation parameters %s", training_args)
392
+
393
+ # Set seed before initializing model.
394
+ set_seed(training_args.seed)
395
+
396
+ # Pre-processing dataset
397
+ import re
398
+ def filter_numeric(entry):
399
+ return (
400
+ "0" not in entry["text"]
401
+ and "1" not in entry["text"]
402
+ and "2" not in entry["text"]
403
+ and "3" not in entry["text"]
404
+ and "4" not in entry["text"]
405
+ and "5" not in entry["text"]
406
+ and "6" not in entry["text"]
407
+ and "7" not in entry["text"]
408
+ and "8" not in entry["text"]
409
+ and "9" not in entry["text"]
410
+ )
411
+
412
+ def filter_inaudible(entry):
413
+ return not re.search("\d|<inaudible>", entry["text"], flags=re.IGNORECASE)
414
+
415
+ #def filter_nynorsk(entry):
416
+ # return re.search("nb-no", entry["sentence_language_code"], flags=re.IGNORECASE)
417
+
418
+ def filter_tooshort(entry):
419
+ #print(f"The audio sample ({entry["audio"]["path"]}) is too small, and has been omitted. "
420
+ return (len(entry["text"]) <= len(entry["audio"]["array"]) // 320) and (len(entry["text"].strip()) >= 3)
421
+
422
+ def map_dataset(entry):
423
+ batch = {"text": entry["text"].lower()}
424
+ batch["text"] = re.sub('[áàâ]', 'a', batch["text"])
425
+ batch["text"] = re.sub('[ä]', 'æ', batch["text"])
426
+ batch["text"] = re.sub('[éèëê]', 'e', batch["text"])
427
+ batch["text"] = re.sub('[íìïî]', 'i', batch["text"])
428
+ batch["text"] = re.sub('[óòöô]', 'o', batch["text"])
429
+ batch["text"] = re.sub('[ö]', 'ø', batch["text"])
430
+ batch["text"] = re.sub('[ç]', 'c', batch["text"])
431
+ batch["text"] = re.sub('[úùüû]', 'u', batch["text"])
432
+ batch["text"] = re.sub('\s', ' ', batch["text"])
433
+ batch["text"] = re.sub('<ee>', 'eee', batch["text"])
434
+ batch["text"] = re.sub('<qq>', 'qqq', batch["text"])
435
+ batch["text"] = re.sub('<mm>', 'mmm', batch["text"])
436
+ # batch["text"] = re.sub('<inaudible>', '?', batch["text"])
437
+ if "<" in batch["text"]:
438
+ raise ValueError(batch["text"])
439
+ return batch
440
+
441
+ # 1. First, let's load the dataset
442
+ raw_datasets = DatasetDict()
443
+
444
+ if training_args.do_train:
445
+ raw_datasets["train"] = load_dataset(
446
+ data_args.dataset_name,
447
+ data_args.dataset_config_name,
448
+ split=data_args.train_split_name,
449
+ use_auth_token=data_args.use_auth_token,
450
+ ).shuffle()
451
+ raw_datasets["train"] = raw_datasets["train"].filter(filter_numeric).filter(filter_inaudible).filter(filter_tooshort)
452
+ raw_datasets["train"] = raw_datasets["train"].map(map_dataset)
453
+
454
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
455
+ raise ValueError(
456
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
457
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
458
+ f"{', '.join(raw_datasets['train'].column_names)}."
459
+ )
460
+
461
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
462
+ raise ValueError(
463
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
464
+ "Make sure to set `--text_column_name` to the correct text column - one of "
465
+ f"{', '.join(raw_datasets['train'].column_names)}."
466
+ )
467
+
468
+ if data_args.max_train_samples is not None:
469
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
470
+
471
+ if training_args.do_eval:
472
+ raw_datasets["eval"] = load_dataset(
473
+ data_args.dataset_name,
474
+ data_args.dataset_config_name,
475
+ split=data_args.eval_split_name,
476
+ use_auth_token=data_args.use_auth_token,
477
+ ).shuffle()
478
+ raw_datasets["eval"] = raw_datasets["eval"].filter(filter_numeric).filter(filter_inaudible).filter(filter_tooshort)
479
+ raw_datasets["eval"] = raw_datasets["eval"].map(map_dataset)
480
+
481
+ if data_args.max_eval_samples is not None:
482
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
483
+
484
+
485
+ # 2. We remove some special characters from the datasets
486
+ # that make training complicated and do not help in transcribing the speech
487
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
488
+ # that could be easily picked up by the model
489
+ #chars_to_ignore_regex = (
490
+ # f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
491
+ #)
492
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\–\_\\\+\#\/]'
493
+
494
+ text_column_name = data_args.text_column_name
495
+
496
+ def remove_special_characters(batch):
497
+ if chars_to_ignore_regex is not None:
498
+ batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
499
+ else:
500
+ batch["target_text"] = batch[text_column_name].lower() + " "
501
+ return batch
502
+
503
+ with training_args.main_process_first(desc="dataset map special characters removal"):
504
+ raw_datasets = raw_datasets.map(
505
+ remove_special_characters,
506
+ remove_columns=[text_column_name],
507
+ desc="remove special characters from datasets",
508
+ )
509
+
510
+ # save special tokens for tokenizer
511
+ word_delimiter_token = data_args.word_delimiter_token
512
+ unk_token = data_args.unk_token
513
+ pad_token = data_args.pad_token
514
+
515
+ # 3. Next, let's load the config as we might need it to create
516
+ # the tokenizer
517
+ # load config
518
+ config = AutoConfig.from_pretrained(
519
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
520
+ )
521
+
522
+ # 4. Next, if no tokenizer file is defined,
523
+ # we create the vocabulary of the model by extracting all unique characters from
524
+ # the training and evaluation datasets
525
+ # We need to make sure that only first rank saves vocabulary
526
+ # make sure all processes wait until vocab is created
527
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
528
+ tokenizer_kwargs = {}
529
+ if tokenizer_name_or_path is None:
530
+ # save vocab in training output dir
531
+ tokenizer_name_or_path = training_args.output_dir
532
+
533
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
534
+
535
+ with training_args.main_process_first():
536
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
537
+ os.remove(vocab_file)
538
+
539
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
540
+ if not os.path.isfile(vocab_file):
541
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
542
+ vocab_dict = create_vocabulary_from_data(
543
+ raw_datasets,
544
+ word_delimiter_token=word_delimiter_token,
545
+ unk_token=unk_token,
546
+ pad_token=pad_token,
547
+ )
548
+
549
+ # save vocab dict to be loaded into tokenizer
550
+ with open(vocab_file, "w") as file:
551
+ json.dump(vocab_dict, file)
552
+
553
+ # if tokenizer has just been created
554
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
555
+ tokenizer_kwargs = {
556
+ "config": config if config.tokenizer_class is not None else None,
557
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
558
+ "unk_token": unk_token,
559
+ "pad_token": pad_token,
560
+ "word_delimiter_token": word_delimiter_token,
561
+ }
562
+
563
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
564
+ # Note for distributed training, the .from_pretrained methods guarantee that only
565
+ # one local process can concurrently download model & vocab.
566
+
567
+ # load feature_extractor and tokenizer
568
+ tokenizer = AutoTokenizer.from_pretrained(
569
+ tokenizer_name_or_path,
570
+ use_auth_token=data_args.use_auth_token,
571
+ **tokenizer_kwargs,
572
+ )
573
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
574
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
575
+ )
576
+
577
+ # adapt config
578
+ config.update(
579
+ {
580
+ "feat_proj_dropout": model_args.feat_proj_dropout,
581
+ "attention_dropout": model_args.attention_dropout,
582
+ "hidden_dropout": model_args.hidden_dropout,
583
+ "final_dropout": model_args.final_dropout,
584
+ "mask_time_prob": model_args.mask_time_prob,
585
+ "mask_time_length": model_args.mask_time_length,
586
+ "mask_feature_prob": model_args.mask_feature_prob,
587
+ "mask_feature_length": model_args.mask_feature_length,
588
+ "gradient_checkpointing": training_args.gradient_checkpointing,
589
+ "layerdrop": model_args.layerdrop,
590
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
591
+ "ctc_zero_infinity": model_args.ctc_zero_infinity,
592
+ "pad_token_id": tokenizer.pad_token_id,
593
+ "vocab_size": len(tokenizer),
594
+ "activation_dropout": model_args.activation_dropout,
595
+ }
596
+ )
597
+
598
+ # create model
599
+ model = AutoModelForCTC.from_pretrained(
600
+ model_args.model_name_or_path,
601
+ cache_dir=model_args.cache_dir,
602
+ config=config,
603
+ use_auth_token=data_args.use_auth_token,
604
+ )
605
+
606
+ # freeze encoder
607
+ if model_args.freeze_feature_encoder:
608
+ model.freeze_feature_encoder()
609
+
610
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
611
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
612
+ # so that we just need to set the correct target sampling rate and normalize the input
613
+ # via the `feature_extractor`
614
+
615
+ # make sure that dataset decodes audio with correct sampling rate
616
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
617
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
618
+ raw_datasets = raw_datasets.cast_column(
619
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
620
+ )
621
+
622
+ # derive max & min input length for sample rate & max duration
623
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
624
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
625
+ audio_column_name = data_args.audio_column_name
626
+ num_workers = data_args.preprocessing_num_workers
627
+
628
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
629
+ phoneme_language = data_args.phoneme_language
630
+
631
+ # Preprocessing the datasets.
632
+ # We need to read the audio files as arrays and tokenize the targets.
633
+ def prepare_dataset(batch):
634
+ # load audio
635
+ sample = batch[audio_column_name]
636
+
637
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
638
+ batch["input_values"] = inputs.input_values[0]
639
+ batch["input_length"] = len(batch["input_values"])
640
+
641
+ # encode targets
642
+ additional_kwargs = {}
643
+ if phoneme_language is not None:
644
+ additional_kwargs["phonemizer_lang"] = phoneme_language
645
+
646
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
647
+ return batch
648
+
649
+ with training_args.main_process_first(desc="dataset map preprocessing"):
650
+ vectorized_datasets = raw_datasets.map(
651
+ prepare_dataset,
652
+ remove_columns=next(iter(raw_datasets.values())).column_names,
653
+ num_proc=num_workers,
654
+ desc="preprocess datasets",
655
+ )
656
+
657
+ def is_audio_in_length_range(length):
658
+ return length > min_input_length and length < max_input_length
659
+
660
+ # filter data that is shorter than min_input_length
661
+ vectorized_datasets = vectorized_datasets.filter(
662
+ is_audio_in_length_range,
663
+ num_proc=num_workers,
664
+ input_columns=["input_length"],
665
+ )
666
+
667
+ # 7. Next, we can prepare the training.
668
+ # Let's use word error rate (WER) as our evaluation metric,
669
+ # instantiate a data collator and the trainer
670
+
671
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
672
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
673
+
674
+ # for large datasets it is advised to run the preprocessing on a
675
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
676
+ # be a timeout when running the script in distributed mode.
677
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
678
+ # cached dataset
679
+ if data_args.preprocessing_only:
680
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
681
+ return
682
+
683
+ def compute_metrics(pred):
684
+ pred_logits = pred.predictions
685
+ pred_ids = np.argmax(pred_logits, axis=-1)
686
+
687
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
688
+
689
+ pred_str = tokenizer.batch_decode(pred_ids)
690
+ # we do not want to group tokens when computing the metrics
691
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
692
+
693
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
694
+
695
+ return metrics
696
+
697
+ # Now save everything to be able to create a single processor later
698
+ if is_main_process(training_args.local_rank):
699
+ # save feature extractor, tokenizer and config
700
+ feature_extractor.save_pretrained(training_args.output_dir)
701
+ tokenizer.save_pretrained(training_args.output_dir)
702
+ config.save_pretrained(training_args.output_dir)
703
+
704
+ try:
705
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
706
+ except (OSError, KeyError):
707
+ warnings.warn(
708
+ "Loading a processor from a feature extractor config that does not"
709
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
710
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
711
+ " `'processor_class': 'Wav2Vec2Processor'`",
712
+ FutureWarning,
713
+ )
714
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
715
+
716
+ # Instantiate custom data collator
717
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
718
+
719
+ # Initialize Trainer
720
+ trainer = Trainer(
721
+ model=model,
722
+ data_collator=data_collator,
723
+ args=training_args,
724
+ compute_metrics=compute_metrics,
725
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
726
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
727
+ tokenizer=feature_extractor,
728
+ )
729
+
730
+ # 8. Finally, we can start training
731
+
732
+ # Training
733
+ if training_args.do_train:
734
+
735
+ # use last checkpoint if exist
736
+ if last_checkpoint is not None:
737
+ checkpoint = last_checkpoint
738
+ elif os.path.isdir(model_args.model_name_or_path):
739
+ checkpoint = model_args.model_name_or_path
740
+ else:
741
+ checkpoint = None
742
+
743
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
744
+ trainer.save_model()
745
+
746
+ metrics = train_result.metrics
747
+ max_train_samples = (
748
+ data_args.max_train_samples
749
+ if data_args.max_train_samples is not None
750
+ else len(vectorized_datasets["train"])
751
+ )
752
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
753
+
754
+ trainer.log_metrics("train", metrics)
755
+ trainer.save_metrics("train", metrics)
756
+ trainer.save_state()
757
+
758
+ # Evaluation
759
+ results = {}
760
+ if training_args.do_eval:
761
+ logger.info("*** Evaluate ***")
762
+ metrics = trainer.evaluate()
763
+ max_eval_samples = (
764
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
765
+ )
766
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
767
+
768
+ trainer.log_metrics("eval", metrics)
769
+ trainer.save_metrics("eval", metrics)
770
+
771
+ # Write model card and (optionally) push to hub
772
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
773
+ kwargs = {
774
+ "finetuned_from": model_args.model_name_or_path,
775
+ "tasks": "speech-recognition",
776
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
777
+ "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
778
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
779
+ }
780
+ if "common_voice" in data_args.dataset_name:
781
+ kwargs["language"] = config_name
782
+
783
+ if training_args.push_to_hub:
784
+ trainer.push_to_hub(**kwargs)
785
+ else:
786
+ trainer.create_model_card(**kwargs)
787
+
788
+ return results
789
+
790
+
791
+ if __name__ == "__main__":
792
+ main()
runs/Feb04_12-19-59_dante/1643973630.5333126/events.out.tfevents.1643973630.dante.1786377.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:102d4a9860ed99fb120d6b61b95f00e0e274e6481585e1e630824a6b75940f95
3
+ size 4765
runs/Feb04_12-19-59_dante/events.out.tfevents.1643973630.dante.1786377.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48a422de8738b9c59fa5e4bc553d5b0167e3b63a95af435473a699f5b81aa178
3
+ size 52574
runs/Feb05_11-55-40_dante/1644058575.319772/events.out.tfevents.1644058575.dante.2573362.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:956f52ac1957263e06ed215d081ab32f3b0e5a37d3abf6613fbf63b0e1e5d732
3
+ size 4765
runs/Feb05_11-55-40_dante/events.out.tfevents.1644058575.dante.2573362.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ed0c086f730c38fc09d64f5ffafdcefd8d80c2a6cc2cf5adabbf7b7255345a3
3
+ size 10165
runs/Feb05_11-55-40_dante/events.out.tfevents.1644066583.dante.2573362.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5e49ff79ccc0ad21eb2833b98a8f46f3dd861968bd63986f8da5f15ddc0a81f
3
+ size 358
runs/Feb06_00-33-18_dante/1644104059.4582894/events.out.tfevents.1644104059.dante.2706942.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adc02f1aa0c8de2f18a4eb7567614d49955912b374acf7bb2d7d4402b22715a2
3
+ size 4765
runs/Feb06_00-33-18_dante/events.out.tfevents.1644104059.dante.2706942.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be31c7c9940fea61350188c3c5852d842fea96dfcf4b1e3d73fef55dc677c878
3
+ size 34596
runs/Feb06_12-59-06_dante/1644148807.511835/events.out.tfevents.1644148807.dante.2790531.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de29a2a4263b81525551cc6a8648135a9470f06fdbc742c6b46db893fe00ab19
3
+ size 4765
runs/Feb06_12-59-06_dante/events.out.tfevents.1644148807.dante.2790531.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4bd6d012fbd254fed1b5d06c38715b576b2c2c5bb7dd25ae0428906ff3fa494
3
+ size 5285
runs/Feb06_13-01-43_dante/1644148960.1271484/events.out.tfevents.1644148960.dante.2793694.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da37a286fbcdc1d8756d26fc45a4cc591b00979834d1e0ef7fecffb5d808b7ca
3
+ size 4765
runs/Feb06_13-01-43_dante/events.out.tfevents.1644148960.dante.2793694.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc132a43de8b7d0a6133ee02cc3bdb5eb32925d411ed9f1bdc793156b35c14a4
3
+ size 5285
runs/Feb06_13-01-43_dante/events.out.tfevents.1644149411.dante.2793694.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9395b424df11af082ef53c2069f670a722ff315edcd97097a68909cfcf8b1cb9
3
+ size 358
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer", "processor_class": "Wav2Vec2ProcessorWithLM"}
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.5,
3
+ "train_loss": 0.0,
4
+ "train_runtime": 5.9011,
5
+ "train_samples": 49645,
6
+ "train_samples_per_second": 841.279,
7
+ "train_steps_per_second": 26.436
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.5001611343860781,
5
+ "global_step": 2327,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.06,
12
+ "learning_rate": 8.01984817006747e-06,
13
+ "loss": 0.2478,
14
+ "step": 100
15
+ },
16
+ {
17
+ "epoch": 0.13,
18
+ "learning_rate": 7.659729258075218e-06,
19
+ "loss": 0.222,
20
+ "step": 200
21
+ },
22
+ {
23
+ "epoch": 0.19,
24
+ "learning_rate": 7.303211535202886e-06,
25
+ "loss": 0.283,
26
+ "step": 300
27
+ },
28
+ {
29
+ "epoch": 0.26,
30
+ "learning_rate": 6.943092623210635e-06,
31
+ "loss": 0.2102,
32
+ "step": 400
33
+ },
34
+ {
35
+ "epoch": 0.32,
36
+ "learning_rate": 6.5829737112183816e-06,
37
+ "loss": 0.2127,
38
+ "step": 500
39
+ },
40
+ {
41
+ "epoch": 0.32,
42
+ "eval_loss": 0.13347241282463074,
43
+ "eval_runtime": 385.6175,
44
+ "eval_samples_per_second": 14.099,
45
+ "eval_steps_per_second": 0.882,
46
+ "eval_wer": 0.1047094237500858,
47
+ "step": 500
48
+ },
49
+ {
50
+ "epoch": 0.39,
51
+ "learning_rate": 6.222854799226128e-06,
52
+ "loss": 0.1923,
53
+ "step": 600
54
+ },
55
+ {
56
+ "epoch": 0.45,
57
+ "learning_rate": 5.862735887233875e-06,
58
+ "loss": 0.2001,
59
+ "step": 700
60
+ },
61
+ {
62
+ "epoch": 0.52,
63
+ "learning_rate": 5.502616975241623e-06,
64
+ "loss": 0.199,
65
+ "step": 800
66
+ },
67
+ {
68
+ "epoch": 0.58,
69
+ "learning_rate": 5.14249806324937e-06,
70
+ "loss": 0.1944,
71
+ "step": 900
72
+ },
73
+ {
74
+ "epoch": 0.64,
75
+ "learning_rate": 4.782379151257117e-06,
76
+ "loss": 0.1976,
77
+ "step": 1000
78
+ },
79
+ {
80
+ "epoch": 0.64,
81
+ "eval_loss": 0.1308828443288803,
82
+ "eval_runtime": 385.5506,
83
+ "eval_samples_per_second": 14.102,
84
+ "eval_steps_per_second": 0.882,
85
+ "eval_wer": 0.10391520487905322,
86
+ "step": 1000
87
+ },
88
+ {
89
+ "epoch": 0.71,
90
+ "learning_rate": 4.422260239264865e-06,
91
+ "loss": 0.1845,
92
+ "step": 1100
93
+ },
94
+ {
95
+ "epoch": 0.77,
96
+ "learning_rate": 4.062141327272612e-06,
97
+ "loss": 0.1885,
98
+ "step": 1200
99
+ },
100
+ {
101
+ "epoch": 0.84,
102
+ "learning_rate": 3.7020224152803586e-06,
103
+ "loss": 0.1799,
104
+ "step": 1300
105
+ },
106
+ {
107
+ "epoch": 0.9,
108
+ "learning_rate": 3.3419035032881062e-06,
109
+ "loss": 0.1749,
110
+ "step": 1400
111
+ },
112
+ {
113
+ "epoch": 0.97,
114
+ "learning_rate": 2.981784591295853e-06,
115
+ "loss": 0.1887,
116
+ "step": 1500
117
+ },
118
+ {
119
+ "epoch": 0.97,
120
+ "eval_loss": 0.13062627613544464,
121
+ "eval_runtime": 383.0748,
122
+ "eval_samples_per_second": 14.193,
123
+ "eval_steps_per_second": 0.888,
124
+ "eval_wer": 0.104032866934021,
125
+ "step": 1500
126
+ },
127
+ {
128
+ "epoch": 1.03,
129
+ "learning_rate": 2.6216656793036003e-06,
130
+ "loss": 0.1917,
131
+ "step": 1600
132
+ },
133
+ {
134
+ "epoch": 1.1,
135
+ "learning_rate": 2.261546767311348e-06,
136
+ "loss": 0.1737,
137
+ "step": 1700
138
+ },
139
+ {
140
+ "epoch": 1.16,
141
+ "learning_rate": 1.9014278553190947e-06,
142
+ "loss": 0.1758,
143
+ "step": 1800
144
+ },
145
+ {
146
+ "epoch": 1.22,
147
+ "learning_rate": 1.541308943326842e-06,
148
+ "loss": 0.174,
149
+ "step": 1900
150
+ },
151
+ {
152
+ "epoch": 1.29,
153
+ "learning_rate": 1.181190031334589e-06,
154
+ "loss": 0.18,
155
+ "step": 2000
156
+ },
157
+ {
158
+ "epoch": 1.29,
159
+ "eval_loss": 0.13111014664173126,
160
+ "eval_runtime": 382.6746,
161
+ "eval_samples_per_second": 14.208,
162
+ "eval_steps_per_second": 0.888,
163
+ "eval_wer": 0.10379754282408542,
164
+ "step": 2000
165
+ },
166
+ {
167
+ "epoch": 1.35,
168
+ "learning_rate": 8.210711193423363e-07,
169
+ "loss": 0.1667,
170
+ "step": 2100
171
+ },
172
+ {
173
+ "epoch": 1.42,
174
+ "learning_rate": 4.609522073500836e-07,
175
+ "loss": 0.1774,
176
+ "step": 2200
177
+ },
178
+ {
179
+ "epoch": 1.48,
180
+ "learning_rate": 1.0083329535783077e-07,
181
+ "loss": 0.1779,
182
+ "step": 2300
183
+ },
184
+ {
185
+ "epoch": 1.5,
186
+ "step": 2327,
187
+ "total_flos": 1.6280526756920635e+19,
188
+ "train_loss": 0.19505117766376623,
189
+ "train_runtime": 7387.6715,
190
+ "train_samples_per_second": 10.08,
191
+ "train_steps_per_second": 0.315
192
+ },
193
+ {
194
+ "epoch": 1.5,
195
+ "step": 2327,
196
+ "total_flos": 1.6280526756920635e+19,
197
+ "train_loss": 0.0,
198
+ "train_runtime": 12.046,
199
+ "train_samples_per_second": 412.128,
200
+ "train_steps_per_second": 6.475
201
+ },
202
+ {
203
+ "epoch": 1.5,
204
+ "step": 2327,
205
+ "total_flos": 1.6280526756920635e+19,
206
+ "train_loss": 0.0,
207
+ "train_runtime": 5.9011,
208
+ "train_samples_per_second": 841.279,
209
+ "train_steps_per_second": 26.436
210
+ }
211
+ ],
212
+ "max_steps": 156,
213
+ "num_train_epochs": 1,
214
+ "total_flos": 1.6280526756920635e+19,
215
+ "trial_name": null,
216
+ "trial_params": null
217
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cba0407afeb94e5c61fb60760555d3e67958b71b4ae430dc28c3be8ab33d4a2d
3
+ size 3055
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6, "g": 7, "h": 8, "i": 9, "j": 10, "k": 11, "l": 12, "m": 13, "n": 14, "o": 15, "p": 16, "q": 17, "r": 18, "s": 19, "t": 20, "u": 21, "v": 22, "w": 23, "x": 24, "y": 25, "z": 26, "å": 27, "æ": 28, "ø": 29, "|": 0, "[UNK]": 30, "[PAD]": 31}