--- language: - 'no' license: apache-2.0 base_model: NbAiLab/nb-whisper-medium-RC1 tags: - audio - asr - automatic-speech-recognition - hf-asr-leaderboard model-index: - name: nb-whisper-medium-v0.8-vad3 results: [] --- # nb-whisper-medium-v0.8-vad3 This model is a fine-tuned version of [NbAiLab/nb-whisper-medium-RC1](https://huggingface.co/NbAiLab/nb-whisper-medium-RC1) on the NbAiLab/ncc_speech_styling_v2_vad3 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - lr_scheduler_type: linear - per_device_train_batch_size: 32 - total_train_batch_size_per_node: 128 - total_train_batch_size: 1024 - total_optimization_steps: 50,000 - starting_optimization_step: None - finishing_optimization_step: 50,000 - num_train_dataset_workers: 32 - num_hosts: 8 - total_num_training_examples: 51,200,000 - steps_per_epoch: 7455 - num_beams: None - weight_decay: 0.01 - adam_beta1: 0.9 - adam_beta2: 0.98 - adam_epsilon: 1e-06 - dropout: True - bpe_dropout_probability: 0.2 - activation_dropout_probability: 0.1 ### Training results | step | validation_nst_loss | train_loss | validation_nst_wer | validation_nst_cer | validation_nst_exact_wer | validation_nst_exact_cer | validation_clean_stortinget_no_loss | validation_clean_stortinget_no_wer | validation_clean_stortinget_no_cer | validation_clean_stortinget_no_exact_wer | validation_clean_stortinget_no_exact_cer | |:-----:|:-------------------:|:----------:|:------------------:|:------------------:|:------------------------:|:------------------------:|:-----------------------------------:|:----------------------------------:|:----------------------------------:|:----------------------------------------:|:----------------------------------------:| | 0 | 0.4223 | 0.8343 | 2.3463 | 0.7206 | 2.9397 | 0.8105 | 0.6313 | 8.8868 | 5.7697 | 11.8752 | 6.2280 | | 5000 | 0.4364 | 0.5289 | 2.6077 | 0.8063 | 3.2555 | 0.9057 | 0.6300 | 9.1071 | 5.8300 | 12.0840 | 6.3028 | | 10000 | 0.4353 | 0.4901 | 2.4824 | 0.7765 | 3.0867 | 0.8709 | 0.6463 | 9.2563 | 5.9382 | 12.2144 | 6.4042 | ### Framework versions - Transformers 4.34.1 - Datasets 2.16.1 - Tokenizers 0.14.1