Neha-CanWill commited on
Commit
d21a17a
1 Parent(s): 3464cb2

End of training

Browse files
FOIA_1.pdf ADDED
Binary file (369 kB). View file
 
README.md CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 1.0686
21
- - Answer: {'precision': 0.36396724294813465, 'recall': 0.49443757725587145, 'f1': 0.41928721174004197, 'number': 809}
22
- - Header: {'precision': 0.27835051546391754, 'recall': 0.226890756302521, 'f1': 0.25, 'number': 119}
23
- - Question: {'precision': 0.5165991902834008, 'recall': 0.5990610328638498, 'f1': 0.5547826086956522, 'number': 1065}
24
- - Overall Precision: 0.4381
25
- - Overall Recall: 0.5344
26
- - Overall F1: 0.4815
27
- - Overall Accuracy: 0.6250
28
 
29
  ## Model description
30
 
@@ -55,21 +55,21 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
- | 1.6981 | 1.0 | 10 | 1.5076 | {'precision': 0.03027027027027027, 'recall': 0.034610630407911, 'f1': 0.032295271049596314, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2620056497175141, 'recall': 0.3483568075117371, 'f1': 0.29907295445384924, 'number': 1065} | 0.1704 | 0.2002 | 0.1841 | 0.3875 |
59
- | 1.414 | 2.0 | 20 | 1.3021 | {'precision': 0.21108179419525067, 'recall': 0.39555006180469715, 'f1': 0.2752688172043011, 'number': 809} | {'precision': 0.23076923076923078, 'recall': 0.12605042016806722, 'f1': 0.16304347826086957, 'number': 119} | {'precision': 0.29304029304029305, 'recall': 0.4507042253521127, 'f1': 0.35516093229744733, 'number': 1065} | 0.2532 | 0.4089 | 0.3127 | 0.4499 |
60
- | 1.2456 | 3.0 | 30 | 1.1694 | {'precision': 0.23877245508982037, 'recall': 0.3943139678615575, 'f1': 0.29743589743589743, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.17647058823529413, 'f1': 0.23076923076923078, 'number': 119} | {'precision': 0.35604395604395606, 'recall': 0.6084507042253521, 'f1': 0.4492201039861352, 'number': 1065} | 0.3069 | 0.4957 | 0.3791 | 0.5226 |
61
- | 1.1356 | 4.0 | 40 | 1.0684 | {'precision': 0.2732606873428332, 'recall': 0.40296662546353523, 'f1': 0.3256743256743257, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.23529411764705882, 'f1': 0.27586206896551724, 'number': 119} | {'precision': 0.4185733512786003, 'recall': 0.584037558685446, 'f1': 0.48765190121520974, 'number': 1065} | 0.3532 | 0.4897 | 0.4104 | 0.5856 |
62
- | 1.0269 | 5.0 | 50 | 1.0533 | {'precision': 0.29270462633451955, 'recall': 0.40667490729295425, 'f1': 0.3404035178479048, 'number': 809} | {'precision': 0.2857142857142857, 'recall': 0.2184873949579832, 'f1': 0.24761904761904763, 'number': 119} | {'precision': 0.4263959390862944, 'recall': 0.6309859154929578, 'f1': 0.5088981446421811, 'number': 1065} | 0.3680 | 0.5153 | 0.4293 | 0.5925 |
63
- | 0.9574 | 6.0 | 60 | 1.0417 | {'precision': 0.31875, 'recall': 0.5043263288009888, 'f1': 0.3906175203446625, 'number': 809} | {'precision': 0.2839506172839506, 'recall': 0.19327731092436976, 'f1': 0.22999999999999998, 'number': 119} | {'precision': 0.5027173913043478, 'recall': 0.5211267605633803, 'f1': 0.5117565698478561, 'number': 1065} | 0.4 | 0.4947 | 0.4424 | 0.6055 |
64
- | 0.8746 | 7.0 | 70 | 1.0403 | {'precision': 0.33510167992926615, 'recall': 0.4684796044499382, 'f1': 0.39072164948453614, 'number': 809} | {'precision': 0.3023255813953488, 'recall': 0.2184873949579832, 'f1': 0.25365853658536586, 'number': 119} | {'precision': 0.5072340425531915, 'recall': 0.5596244131455399, 'f1': 0.532142857142857, 'number': 1065} | 0.4185 | 0.5023 | 0.4566 | 0.6148 |
65
- | 0.8197 | 8.0 | 80 | 1.0323 | {'precision': 0.3490304709141274, 'recall': 0.4672435105067985, 'f1': 0.3995771670190275, 'number': 809} | {'precision': 0.25742574257425743, 'recall': 0.2184873949579832, 'f1': 0.23636363636363636, 'number': 119} | {'precision': 0.49101796407185627, 'recall': 0.615962441314554, 'f1': 0.546438983756768, 'number': 1065} | 0.4206 | 0.5319 | 0.4698 | 0.6212 |
66
- | 0.7517 | 9.0 | 90 | 1.0418 | {'precision': 0.3580705009276438, 'recall': 0.47713226205191595, 'f1': 0.4091149973502915, 'number': 809} | {'precision': 0.27472527472527475, 'recall': 0.21008403361344538, 'f1': 0.2380952380952381, 'number': 119} | {'precision': 0.5266323024054983, 'recall': 0.5755868544600939, 'f1': 0.5500224315836698, 'number': 1065} | 0.4389 | 0.5138 | 0.4734 | 0.6237 |
67
- | 0.7561 | 10.0 | 100 | 1.0652 | {'precision': 0.3465587044534413, 'recall': 0.5290482076637825, 'f1': 0.4187866927592955, 'number': 809} | {'precision': 0.29545454545454547, 'recall': 0.2184873949579832, 'f1': 0.251207729468599, 'number': 119} | {'precision': 0.536697247706422, 'recall': 0.5492957746478874, 'f1': 0.5429234338747101, 'number': 1065} | 0.4306 | 0.5213 | 0.4716 | 0.6226 |
68
- | 0.6786 | 11.0 | 110 | 1.0498 | {'precision': 0.3706896551724138, 'recall': 0.4783683559950556, 'f1': 0.4177010253642741, 'number': 809} | {'precision': 0.3068181818181818, 'recall': 0.226890756302521, 'f1': 0.2608695652173913, 'number': 119} | {'precision': 0.5236593059936908, 'recall': 0.6234741784037559, 'f1': 0.5692241748821258, 'number': 1065} | 0.4492 | 0.5409 | 0.4908 | 0.6369 |
69
- | 0.6839 | 12.0 | 120 | 1.1004 | {'precision': 0.35621198957428324, 'recall': 0.5067985166872683, 'f1': 0.41836734693877553, 'number': 809} | {'precision': 0.30851063829787234, 'recall': 0.24369747899159663, 'f1': 0.27230046948356806, 'number': 119} | {'precision': 0.5135350318471338, 'recall': 0.6056338028169014, 'f1': 0.5557949159844894, 'number': 1065} | 0.4334 | 0.5439 | 0.4824 | 0.6115 |
70
- | 0.6505 | 13.0 | 130 | 1.0685 | {'precision': 0.3501303214596003, 'recall': 0.49814585908529047, 'f1': 0.41122448979591836, 'number': 809} | {'precision': 0.26804123711340205, 'recall': 0.2184873949579832, 'f1': 0.24074074074074076, 'number': 119} | {'precision': 0.5467756584922797, 'recall': 0.5652582159624413, 'f1': 0.5558633425669437, 'number': 1065} | 0.4389 | 0.5173 | 0.4749 | 0.6324 |
71
- | 0.6221 | 14.0 | 140 | 1.0541 | {'precision': 0.3643192488262911, 'recall': 0.4796044499381953, 'f1': 0.4140875133404482, 'number': 809} | {'precision': 0.2857142857142857, 'recall': 0.23529411764705882, 'f1': 0.2580645161290323, 'number': 119} | {'precision': 0.5176747839748626, 'recall': 0.6187793427230047, 'f1': 0.5637296834901625, 'number': 1065} | 0.4413 | 0.5394 | 0.4854 | 0.6316 |
72
- | 0.6015 | 15.0 | 150 | 1.0686 | {'precision': 0.36396724294813465, 'recall': 0.49443757725587145, 'f1': 0.41928721174004197, 'number': 809} | {'precision': 0.27835051546391754, 'recall': 0.226890756302521, 'f1': 0.25, 'number': 119} | {'precision': 0.5165991902834008, 'recall': 0.5990610328638498, 'f1': 0.5547826086956522, 'number': 1065} | 0.4381 | 0.5344 | 0.4815 | 0.6250 |
73
 
74
 
75
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 1.0436
21
+ - Answer: {'precision': 0.3978685612788632, 'recall': 0.553770086526576, 'f1': 0.4630490956072351, 'number': 809}
22
+ - Header: {'precision': 0.32926829268292684, 'recall': 0.226890756302521, 'f1': 0.26865671641791045, 'number': 119}
23
+ - Question: {'precision': 0.5241157556270096, 'recall': 0.612206572769953, 'f1': 0.5647466435686443, 'number': 1065}
24
+ - Overall Precision: 0.4596
25
+ - Overall Recall: 0.5655
26
+ - Overall F1: 0.5071
27
+ - Overall Accuracy: 0.6267
28
 
29
  ## Model description
30
 
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 1.7148 | 1.0 | 10 | 1.5016 | {'precision': 0.08819018404907976, 'recall': 0.14215080346106304, 'f1': 0.10884997633696165, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2198581560283688, 'recall': 0.08732394366197183, 'f1': 0.125, 'number': 1065} | 0.1204 | 0.1044 | 0.1118 | 0.3613 |
59
+ | 1.4202 | 2.0 | 20 | 1.3572 | {'precision': 0.21160042964554243, 'recall': 0.48702101359703337, 'f1': 0.29502059153874954, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.24895977808599168, 'recall': 0.3370892018779343, 'f1': 0.28639808536098926, 'number': 1065} | 0.2265 | 0.3778 | 0.2832 | 0.4216 |
60
+ | 1.2863 | 3.0 | 30 | 1.2150 | {'precision': 0.25656167979002625, 'recall': 0.48331273176761436, 'f1': 0.33519074153450495, 'number': 809} | {'precision': 0.06779661016949153, 'recall': 0.03361344537815126, 'f1': 0.0449438202247191, 'number': 119} | {'precision': 0.3437908496732026, 'recall': 0.49389671361502346, 'f1': 0.4053949903660886, 'number': 1065} | 0.2959 | 0.4621 | 0.3608 | 0.4790 |
61
+ | 1.1633 | 4.0 | 40 | 1.1144 | {'precision': 0.2625454545454545, 'recall': 0.446229913473424, 'f1': 0.3305860805860806, 'number': 809} | {'precision': 0.3253012048192771, 'recall': 0.226890756302521, 'f1': 0.26732673267326734, 'number': 119} | {'precision': 0.37986577181208053, 'recall': 0.5314553990610329, 'f1': 0.4430528375733855, 'number': 1065} | 0.3236 | 0.4787 | 0.3862 | 0.5442 |
62
+ | 1.0585 | 5.0 | 50 | 1.0827 | {'precision': 0.3039940828402367, 'recall': 0.5080346106304079, 'f1': 0.38037945395650163, 'number': 809} | {'precision': 0.32432432432432434, 'recall': 0.20168067226890757, 'f1': 0.24870466321243526, 'number': 119} | {'precision': 0.4149933065595716, 'recall': 0.5821596244131455, 'f1': 0.48456428292301673, 'number': 1065} | 0.3613 | 0.5294 | 0.4295 | 0.5700 |
63
+ | 0.9987 | 6.0 | 60 | 1.0373 | {'precision': 0.326783114992722, 'recall': 0.5550061804697157, 'f1': 0.4113605130554283, 'number': 809} | {'precision': 0.4074074074074074, 'recall': 0.18487394957983194, 'f1': 0.2543352601156069, 'number': 119} | {'precision': 0.453125, 'recall': 0.5173708920187794, 'f1': 0.4831214379658045, 'number': 1065} | 0.3865 | 0.5128 | 0.4408 | 0.6016 |
64
+ | 0.9315 | 7.0 | 70 | 1.0055 | {'precision': 0.34718100890207715, 'recall': 0.4338689740420272, 'f1': 0.3857142857142857, 'number': 809} | {'precision': 0.3229166666666667, 'recall': 0.2605042016806723, 'f1': 0.28837209302325584, 'number': 119} | {'precision': 0.4558011049723757, 'recall': 0.6197183098591549, 'f1': 0.5252686032630322, 'number': 1065} | 0.4078 | 0.5228 | 0.4582 | 0.6164 |
65
+ | 0.8716 | 8.0 | 80 | 1.0112 | {'precision': 0.33733013589128696, 'recall': 0.5216316440049443, 'f1': 0.40970873786407763, 'number': 809} | {'precision': 0.3717948717948718, 'recall': 0.24369747899159663, 'f1': 0.29441624365482233, 'number': 119} | {'precision': 0.44542372881355935, 'recall': 0.6169014084507042, 'f1': 0.5173228346456693, 'number': 1065} | 0.3951 | 0.5559 | 0.4620 | 0.6153 |
66
+ | 0.8102 | 9.0 | 90 | 1.0152 | {'precision': 0.3773062730627306, 'recall': 0.5055624227441285, 'f1': 0.4321183306920232, 'number': 809} | {'precision': 0.3611111111111111, 'recall': 0.2184873949579832, 'f1': 0.27225130890052357, 'number': 119} | {'precision': 0.4880860876249039, 'recall': 0.596244131455399, 'f1': 0.536770921386306, 'number': 1065} | 0.4355 | 0.5369 | 0.4809 | 0.6226 |
67
+ | 0.8003 | 10.0 | 100 | 1.0342 | {'precision': 0.3804878048780488, 'recall': 0.5784919653893696, 'f1': 0.45904855321235905, 'number': 809} | {'precision': 0.32, 'recall': 0.20168067226890757, 'f1': 0.24742268041237112, 'number': 119} | {'precision': 0.5183887915936952, 'recall': 0.5558685446009389, 'f1': 0.5364748527412777, 'number': 1065} | 0.4430 | 0.5439 | 0.4883 | 0.6143 |
68
+ | 0.728 | 11.0 | 110 | 1.0330 | {'precision': 0.3871559633027523, 'recall': 0.5216316440049443, 'f1': 0.4444444444444445, 'number': 809} | {'precision': 0.29213483146067415, 'recall': 0.2184873949579832, 'f1': 0.25, 'number': 119} | {'precision': 0.4981791697013838, 'recall': 0.6422535211267606, 'f1': 0.561115668580804, 'number': 1065} | 0.4436 | 0.5680 | 0.4981 | 0.6221 |
69
+ | 0.7175 | 12.0 | 120 | 1.0841 | {'precision': 0.38127090301003347, 'recall': 0.5636588380716935, 'f1': 0.45486284289276807, 'number': 809} | {'precision': 0.3684210526315789, 'recall': 0.23529411764705882, 'f1': 0.28717948717948716, 'number': 119} | {'precision': 0.5153225806451613, 'recall': 0.6, 'f1': 0.5544468546637744, 'number': 1065} | 0.4471 | 0.5635 | 0.4986 | 0.6243 |
70
+ | 0.6893 | 13.0 | 130 | 1.0501 | {'precision': 0.3815126050420168, 'recall': 0.5611866501854141, 'f1': 0.4542271135567784, 'number': 809} | {'precision': 0.30952380952380953, 'recall': 0.2184873949579832, 'f1': 0.2561576354679803, 'number': 119} | {'precision': 0.5256950294860994, 'recall': 0.5859154929577465, 'f1': 0.5541740674955595, 'number': 1065} | 0.4486 | 0.5539 | 0.4957 | 0.6228 |
71
+ | 0.653 | 14.0 | 140 | 1.0222 | {'precision': 0.39345794392523364, 'recall': 0.5203955500618047, 'f1': 0.4481106971793507, 'number': 809} | {'precision': 0.34615384615384615, 'recall': 0.226890756302521, 'f1': 0.27411167512690354, 'number': 119} | {'precision': 0.5045180722891566, 'recall': 0.6291079812206573, 'f1': 0.55996656916005, 'number': 1065} | 0.4515 | 0.5610 | 0.5003 | 0.6269 |
72
+ | 0.6494 | 15.0 | 150 | 1.0436 | {'precision': 0.3978685612788632, 'recall': 0.553770086526576, 'f1': 0.4630490956072351, 'number': 809} | {'precision': 0.32926829268292684, 'recall': 0.226890756302521, 'f1': 0.26865671641791045, 'number': 119} | {'precision': 0.5241157556270096, 'recall': 0.612206572769953, 'f1': 0.5647466435686443, 'number': 1065} | 0.4596 | 0.5655 | 0.5071 | 0.6267 |
73
 
74
 
75
  ### Framework versions
logs/events.out.tfevents.1710136741.1855972cf523.694.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6d61b4ffd150c59d105239c9a98c64fd8f915cf263f1b0a06c35df5942f41abf
3
- size 14670
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb555037898ab6fb62f120b5edc5a5b39565497f42f97b534117197345611956
3
+ size 15739
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:08e2da8b35da9870ceddd027744e3d7321d4ca6e57f62eff64f42e477211ffa1
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ab1a8c016ae9be7abd206e819f3a8be7f891e478b2aa5d4b7116951983f1271
3
  size 450558212