File size: 2,611 Bytes
9820e49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: apache-2.0
base_model: NekoFi/portrait_cosu_exp3
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: portrait_cosu_exp4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9037037037037037
- name: Precision
type: precision
value: 0.9042846124813338
- name: Recall
type: recall
value: 0.9037037037037037
- name: F1
type: f1
value: 0.9035443167305236
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# portrait_cosu_exp4
This model is a fine-tuned version of [NekoFi/portrait_cosu_exp3](https://huggingface.co/NekoFi/portrait_cosu_exp3) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2432
- Accuracy: 0.9037
- Precision: 0.9043
- Recall: 0.9037
- F1: 0.9035
- Confusion Matrix: [[66, 5], [8, 56]]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Confusion Matrix |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------------------:|
| 0.3876 | 1.0 | 19 | 0.3650 | 0.8370 | 0.8555 | 0.8370 | 0.8336 | [[68, 3], [19, 45]] |
| 0.2696 | 2.0 | 38 | 0.2479 | 0.8963 | 0.8965 | 0.8963 | 0.8962 | [[65, 6], [8, 56]] |
| 0.2143 | 3.0 | 57 | 0.2665 | 0.8889 | 0.8906 | 0.8889 | 0.8885 | [[66, 5], [10, 54]] |
| 0.1629 | 4.0 | 76 | 0.2432 | 0.9037 | 0.9043 | 0.9037 | 0.9035 | [[66, 5], [8, 56]] |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|