NeoZ123 commited on
Commit
dd80640
1 Parent(s): ecbacf2

Upload 13 files

Browse files
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - zh
5
+ library_name: transformers
6
+ tags:
7
+ - Long Context
8
+ - chatglm
9
+ - llama
10
+ datasets:
11
+ - THUDM/LongReward-10k
12
+ pipeline_tag: text-generation
13
+ ---
14
+ # LongReward-llama3.1-8b-SFT
15
+
16
+
17
+ <p align="center">
18
+ 🤗 <a href="https://huggingface.co/datasets/THUDM/LongReward-10k" target="_blank">[LongReward Dataset] </a> • 💻 <a href="https://github.com/THUDM/LongReward" target="_blank">[Github Repo]</a> • 📃 <a href="https://arxiv.org/abs/" target="_blank">[LongReward Paper]</a>
19
+ </p>
20
+
21
+ LongReward-llama3.1-8b-SFT is supervisedly fined-tuned from [Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) using the `sft` split of [LongReward-10k](https://huggingface.co/datasets/THUDM/LongReward-45) dataset, and supports a maximum context window of up to 64K tokens.
22
+
23
+ Environment: `transforemrs>=4.43.0`.
24
+
25
+ A simple demo for deployment of the model:
26
+ ```python
27
+ import torch
28
+ from transformers import AutoTokenizer, AutoModelForCausalLM
29
+
30
+ model_path = "THUDM/LongReward-llama3.1-8b-SFT"
31
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
32
+ model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map='auto')
33
+ context = '''
34
+ W. Russell Todd, 94, United States Army general (b. 1928). February 13. Tim Aymar, 59, heavy metal singer (Pharaoh) (b. 1963). Marshall \"Eddie\" Conway, 76, Black Panther Party leader (b. 1946). Roger Bonk, 78, football player (North Dakota Fighting Sioux, Winnipeg Blue Bombers) (b. 1944). Conrad Dobler, 72, football player (St. Louis Cardinals, New Orleans Saints, Buffalo Bills) (b. 1950). Brian DuBois, 55, baseball player (Detroit Tigers) (b. 1967). Robert Geddes, 99, architect, dean of the Princeton University School of Architecture (1965–1982) (b. 1923). Tom Luddy, 79, film producer (Barfly, The Secret Garden), co-founder of the Telluride Film Festival (b. 1943). David Singmaster, 84, mathematician (b. 1938).
35
+ '''
36
+ query = "What was Robert Geddes' profession?"
37
+ prompt = context + '\n\n' + query
38
+ response, _ = model.chat(tokenizer, prompt, temprature=1, max_new_tokens=1024)
39
+ print(response)
40
+ ```
41
+
42
+ You can also deploy the model with [vllm](https://github.com/vllm-project/vllm) for faster inference:
43
+ ```python
44
+ import torch
45
+ from vllm import LLM, SamplingParams
46
+
47
+ model_path = "THUDM/LongReward-llama3.1-8b-SFT"
48
+ model = LLM(
49
+ model= model_path,
50
+ dtype=torch.bfloat16,
51
+ trust_remote_code=True,
52
+ tensor_parallel_size=1,
53
+ max_model_len=65536,
54
+ gpu_memory_utilization=1,
55
+ )
56
+ tokenizer = model.get_tokenizer()
57
+ context = '''
58
+ W. Russell Todd, 94, United States Army general (b. 1928). February 13. Tim Aymar, 59, heavy metal singer (Pharaoh) (b. 1963). Marshall \"Eddie\" Conway, 76, Black Panther Party leader (b. 1946). Roger Bonk, 78, football player (North Dakota Fighting Sioux, Winnipeg Blue Bombers) (b. 1944). Conrad Dobler, 72, football player (St. Louis Cardinals, New Orleans Saints, Buffalo Bills) (b. 1950). Brian DuBois, 55, baseball player (Detroit Tigers) (b. 1967). Robert Geddes, 99, architect, dean of the Princeton University School of Architecture (1965–1982) (b. 1923). Tom Luddy, 79, film producer (Barfly, The Secret Garden), co-founder of the Telluride Film Festival (b. 1943). David Singmaster, 84, mathematician (b. 1938).
59
+ '''
60
+ query = "What was Robert Geddes' profession?"
61
+ prompt = context + '\n\n' + query
62
+ inputs = tokenizer.build_chat_input(prompt, history=[], role='user')
63
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), tokenizer.get_command("<|observation|>")]
64
+ generation_params = SamplingParams(
65
+ temperature=0.95,
66
+ top_p=0.7,
67
+ max_tokens=1024,
68
+ stop_token_ids=eos_token_id,
69
+ )
70
+ input_ids = inputs.input_ids[0].tolist()
71
+ outputs = model.generate(sampling_params=generation_params, prompt_token_ids=[input_ids])
72
+ response = tokenizer.decode(outputs[0].outputs[0].token_ids[:-1])
73
+ print(response)
74
+ ```
75
+
76
+ ## License
77
+ [Llama-3.1 License](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
78
+
79
+ ## Citation
80
+
81
+ If you find our work useful, please consider citing LongReward:
82
+
83
+ ```
84
+ @article{zhang2024longreward,
85
+ title = {LongReward: Improving Long-context Large Language Models
86
+ with AI Feedback}
87
+ author={Jiajie Zhang and Zhongni Hou and Xin Lv and Shulin Cao and Zhenyu Hou and Yilin Niu and Lei Hou and Lei Hou and Yuxiao Dong and Ling Feng and Juanzi Li},
88
+ journal={arXiv preprint arXiv:},
89
+ year={2024}
90
+ }
91
+ ```
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoModelForCausalLM": "modeling_llama.LlamaForCausalLM"
7
+ },
8
+ "attention_bias": false,
9
+ "attention_dropout": 0.0,
10
+ "bos_token_id": 128000,
11
+ "eos_token_id": 128001,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 14336,
16
+ "max_position_embeddings": 65536,
17
+ "mlp_bias": false,
18
+ "model_type": "llama",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 32,
21
+ "num_key_value_heads": 8,
22
+ "pretraining_tp": 1,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_scaling": {
25
+ "factor": 8.0,
26
+ "low_freq_factor": 1.0,
27
+ "high_freq_factor": 4.0,
28
+ "original_max_position_embeddings": 8192,
29
+ "rope_type": "llama3"
30
+ },
31
+ "rope_theta": 500000.0,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.43.0.dev0",
35
+ "use_cache": true,
36
+ "vocab_size": 128256
37
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_sample": true,
3
+ "temperature": 0.6,
4
+ "top_p": 0.9,
5
+ "_from_model_config": true,
6
+ "bos_token_id": 128000,
7
+ "eos_token_id": 128001,
8
+ "transformers_version": "4.43.0.dev0"
9
+ }
model-00000-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff4c8ea839805cc9f7aeb57c4832525fdc04a8f56bb34dff28f7004987fd6de5
3
+ size 4079226064
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8a0597aa5b9fa44d01c89e31a51f095e144eec1da7cd15ae2392b5a6b4a65f6
3
+ size 4079226136
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f01577fffd10041270665020ac02bd038202cc57a4437ad1e8998c7720b28a4
3
+ size 4079226136
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e925cb1224b1c4cd1e70451be4953d741f3007b62ec80843f6135ae115efb295
3
+ size 4079226136
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d80b9b3c8b19a3605f8991d050a6f1acb4c83d9185fc22dc49339093997c44a6
3
+ size 2483036544
model.safetensors.index.json ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16060522496
4
+ },
5
+ "weight_map": {
6
+ "transformer.encoder.layers.0.input_layernorm.weight": "model-00000-of-00005.safetensors",
7
+ "transformer.encoder.layers.0.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
8
+ "transformer.encoder.layers.0.self_attention.query_key_value.weight": "model-00000-of-00005.safetensors",
9
+ "transformer.encoder.layers.0.self_attention.query_key_value.bias": "model-00000-of-00005.safetensors",
10
+ "transformer.encoder.layers.0.self_attention.dense.weight": "model-00000-of-00005.safetensors",
11
+ "transformer.encoder.layers.0.mlp.dense_h_to_4h.weight": "model-00000-of-00005.safetensors",
12
+ "transformer.encoder.layers.0.mlp.dense_4h_to_h.weight": "model-00000-of-00005.safetensors",
13
+ "transformer.encoder.layers.2.input_layernorm.weight": "model-00000-of-00005.safetensors",
14
+ "transformer.encoder.layers.2.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
15
+ "transformer.encoder.layers.2.self_attention.query_key_value.weight": "model-00000-of-00005.safetensors",
16
+ "transformer.encoder.layers.2.self_attention.query_key_value.bias": "model-00000-of-00005.safetensors",
17
+ "transformer.encoder.layers.2.self_attention.dense.weight": "model-00000-of-00005.safetensors",
18
+ "transformer.encoder.layers.2.mlp.dense_h_to_4h.weight": "model-00000-of-00005.safetensors",
19
+ "transformer.encoder.layers.2.mlp.dense_4h_to_h.weight": "model-00000-of-00005.safetensors",
20
+ "transformer.encoder.layers.10.input_layernorm.weight": "model-00001-of-00005.safetensors",
21
+ "transformer.encoder.layers.10.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
22
+ "transformer.encoder.layers.10.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
23
+ "transformer.encoder.layers.10.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
24
+ "transformer.encoder.layers.10.self_attention.dense.weight": "model-00001-of-00005.safetensors",
25
+ "transformer.encoder.layers.10.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
26
+ "transformer.encoder.layers.10.mlp.dense_4h_to_h.weight": "model-00001-of-00005.safetensors",
27
+ "transformer.encoder.layers.14.input_layernorm.weight": "model-00001-of-00005.safetensors",
28
+ "transformer.encoder.layers.14.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
29
+ "transformer.encoder.layers.14.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
30
+ "transformer.encoder.layers.14.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
31
+ "transformer.encoder.layers.14.self_attention.dense.weight": "model-00001-of-00005.safetensors",
32
+ "transformer.encoder.layers.14.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
33
+ "transformer.encoder.layers.14.mlp.dense_4h_to_h.weight": "model-00001-of-00005.safetensors",
34
+ "transformer.encoder.layers.32.input_layernorm.weight": "model-00003-of-00005.safetensors",
35
+ "transformer.encoder.layers.32.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
36
+ "transformer.encoder.layers.32.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
37
+ "transformer.encoder.layers.32.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
38
+ "transformer.encoder.layers.32.self_attention.dense.weight": "model-00003-of-00005.safetensors",
39
+ "transformer.encoder.layers.32.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
40
+ "transformer.encoder.layers.32.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
41
+ "transformer.encoder.layers.27.input_layernorm.weight": "model-00002-of-00005.safetensors",
42
+ "transformer.encoder.layers.27.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
43
+ "transformer.encoder.layers.27.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
44
+ "transformer.encoder.layers.27.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
45
+ "transformer.encoder.layers.27.self_attention.dense.weight": "model-00002-of-00005.safetensors",
46
+ "transformer.encoder.layers.27.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
47
+ "transformer.encoder.layers.27.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
48
+ "transformer.encoder.layers.25.input_layernorm.weight": "model-00002-of-00005.safetensors",
49
+ "transformer.encoder.layers.25.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
50
+ "transformer.encoder.layers.25.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
51
+ "transformer.encoder.layers.25.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
52
+ "transformer.encoder.layers.25.self_attention.dense.weight": "model-00002-of-00005.safetensors",
53
+ "transformer.encoder.layers.25.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
54
+ "transformer.encoder.layers.25.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
55
+ "transformer.encoder.layers.20.input_layernorm.weight": "model-00002-of-00005.safetensors",
56
+ "transformer.encoder.layers.20.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
57
+ "transformer.encoder.layers.20.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
58
+ "transformer.encoder.layers.20.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
59
+ "transformer.encoder.layers.20.self_attention.dense.weight": "model-00002-of-00005.safetensors",
60
+ "transformer.encoder.layers.20.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
61
+ "transformer.encoder.layers.20.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
62
+ "transformer.encoder.layers.7.input_layernorm.weight": "model-00000-of-00005.safetensors",
63
+ "transformer.encoder.layers.7.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
64
+ "transformer.encoder.layers.7.self_attention.query_key_value.weight": "model-00000-of-00005.safetensors",
65
+ "transformer.encoder.layers.7.self_attention.query_key_value.bias": "model-00000-of-00005.safetensors",
66
+ "transformer.encoder.layers.7.self_attention.dense.weight": "model-00000-of-00005.safetensors",
67
+ "transformer.encoder.layers.7.mlp.dense_h_to_4h.weight": "model-00000-of-00005.safetensors",
68
+ "transformer.encoder.layers.7.mlp.dense_4h_to_h.weight": "model-00000-of-00005.safetensors",
69
+ "transformer.encoder.layers.36.input_layernorm.weight": "model-00003-of-00005.safetensors",
70
+ "transformer.encoder.layers.36.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
71
+ "transformer.encoder.layers.36.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
72
+ "transformer.encoder.layers.36.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
73
+ "transformer.encoder.layers.36.self_attention.dense.weight": "model-00003-of-00005.safetensors",
74
+ "transformer.encoder.layers.36.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
75
+ "transformer.encoder.layers.36.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
76
+ "transformer.encoder.layers.1.input_layernorm.weight": "model-00000-of-00005.safetensors",
77
+ "transformer.encoder.layers.1.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
78
+ "transformer.encoder.layers.1.self_attention.query_key_value.weight": "model-00000-of-00005.safetensors",
79
+ "transformer.encoder.layers.1.self_attention.query_key_value.bias": "model-00000-of-00005.safetensors",
80
+ "transformer.encoder.layers.1.self_attention.dense.weight": "model-00000-of-00005.safetensors",
81
+ "transformer.encoder.layers.1.mlp.dense_h_to_4h.weight": "model-00000-of-00005.safetensors",
82
+ "transformer.encoder.layers.1.mlp.dense_4h_to_h.weight": "model-00000-of-00005.safetensors",
83
+ "transformer.encoder.layers.38.input_layernorm.weight": "model-00003-of-00005.safetensors",
84
+ "transformer.encoder.layers.38.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
85
+ "transformer.encoder.layers.38.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
86
+ "transformer.encoder.layers.38.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
87
+ "transformer.encoder.layers.38.self_attention.dense.weight": "model-00003-of-00005.safetensors",
88
+ "transformer.encoder.layers.38.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
89
+ "transformer.encoder.layers.38.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
90
+ "transformer.encoder.layers.28.input_layernorm.weight": "model-00002-of-00005.safetensors",
91
+ "transformer.encoder.layers.28.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
92
+ "transformer.encoder.layers.28.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
93
+ "transformer.encoder.layers.28.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
94
+ "transformer.encoder.layers.28.self_attention.dense.weight": "model-00002-of-00005.safetensors",
95
+ "transformer.encoder.layers.28.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
96
+ "transformer.encoder.layers.28.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
97
+ "transformer.encoder.layers.39.input_layernorm.weight": "model-00003-of-00005.safetensors",
98
+ "transformer.encoder.layers.39.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
99
+ "transformer.encoder.layers.39.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
100
+ "transformer.encoder.layers.39.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
101
+ "transformer.encoder.layers.39.self_attention.dense.weight": "model-00003-of-00005.safetensors",
102
+ "transformer.encoder.layers.39.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
103
+ "transformer.encoder.layers.39.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
104
+ "transformer.encoder.layers.24.input_layernorm.weight": "model-00002-of-00005.safetensors",
105
+ "transformer.encoder.layers.24.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
106
+ "transformer.encoder.layers.24.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
107
+ "transformer.encoder.layers.24.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
108
+ "transformer.encoder.layers.24.self_attention.dense.weight": "model-00002-of-00005.safetensors",
109
+ "transformer.encoder.layers.24.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
110
+ "transformer.encoder.layers.24.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
111
+ "transformer.encoder.layers.9.input_layernorm.weight": "model-00000-of-00005.safetensors",
112
+ "transformer.encoder.layers.9.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
113
+ "transformer.encoder.layers.9.self_attention.query_key_value.weight": "model-00000-of-00005.safetensors",
114
+ "transformer.encoder.layers.9.self_attention.query_key_value.bias": "model-00000-of-00005.safetensors",
115
+ "transformer.encoder.layers.9.self_attention.dense.weight": "model-00000-of-00005.safetensors",
116
+ "transformer.encoder.layers.9.mlp.dense_h_to_4h.weight": "model-00000-of-00005.safetensors",
117
+ "transformer.encoder.layers.9.mlp.dense_4h_to_h.weight": "model-00000-of-00005.safetensors",
118
+ "transformer.encoder.layers.34.input_layernorm.weight": "model-00003-of-00005.safetensors",
119
+ "transformer.encoder.layers.34.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
120
+ "transformer.encoder.layers.34.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
121
+ "transformer.encoder.layers.34.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
122
+ "transformer.encoder.layers.34.self_attention.dense.weight": "model-00003-of-00005.safetensors",
123
+ "transformer.encoder.layers.34.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
124
+ "transformer.encoder.layers.34.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
125
+ "transformer.encoder.layers.26.input_layernorm.weight": "model-00002-of-00005.safetensors",
126
+ "transformer.encoder.layers.26.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
127
+ "transformer.encoder.layers.26.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
128
+ "transformer.encoder.layers.26.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
129
+ "transformer.encoder.layers.26.self_attention.dense.weight": "model-00002-of-00005.safetensors",
130
+ "transformer.encoder.layers.26.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
131
+ "transformer.encoder.layers.26.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
132
+ "transformer.encoder.layers.18.input_layernorm.weight": "model-00001-of-00005.safetensors",
133
+ "transformer.encoder.layers.18.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
134
+ "transformer.encoder.layers.18.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
135
+ "transformer.encoder.layers.18.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
136
+ "transformer.encoder.layers.18.self_attention.dense.weight": "model-00001-of-00005.safetensors",
137
+ "transformer.encoder.layers.18.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
138
+ "transformer.encoder.layers.18.mlp.dense_4h_to_h.weight": "model-00001-of-00005.safetensors",
139
+ "transformer.encoder.layers.8.input_layernorm.weight": "model-00000-of-00005.safetensors",
140
+ "transformer.encoder.layers.8.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
141
+ "transformer.encoder.layers.8.self_attention.query_key_value.weight": "model-00000-of-00005.safetensors",
142
+ "transformer.encoder.layers.8.self_attention.query_key_value.bias": "model-00000-of-00005.safetensors",
143
+ "transformer.encoder.layers.8.self_attention.dense.weight": "model-00000-of-00005.safetensors",
144
+ "transformer.encoder.layers.8.mlp.dense_h_to_4h.weight": "model-00000-of-00005.safetensors",
145
+ "transformer.encoder.layers.8.mlp.dense_4h_to_h.weight": "model-00000-of-00005.safetensors",
146
+ "transformer.encoder.layers.37.input_layernorm.weight": "model-00003-of-00005.safetensors",
147
+ "transformer.encoder.layers.37.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
148
+ "transformer.encoder.layers.37.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
149
+ "transformer.encoder.layers.37.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
150
+ "transformer.encoder.layers.37.self_attention.dense.weight": "model-00003-of-00005.safetensors",
151
+ "transformer.encoder.layers.37.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
152
+ "transformer.encoder.layers.37.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
153
+ "transformer.encoder.layers.35.input_layernorm.weight": "model-00003-of-00005.safetensors",
154
+ "transformer.encoder.layers.35.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
155
+ "transformer.encoder.layers.35.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
156
+ "transformer.encoder.layers.35.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
157
+ "transformer.encoder.layers.35.self_attention.dense.weight": "model-00003-of-00005.safetensors",
158
+ "transformer.encoder.layers.35.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
159
+ "transformer.encoder.layers.35.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
160
+ "transformer.encoder.layers.22.input_layernorm.weight": "model-00002-of-00005.safetensors",
161
+ "transformer.encoder.layers.22.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
162
+ "transformer.encoder.layers.22.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
163
+ "transformer.encoder.layers.22.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
164
+ "transformer.encoder.layers.22.self_attention.dense.weight": "model-00002-of-00005.safetensors",
165
+ "transformer.encoder.layers.22.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
166
+ "transformer.encoder.layers.22.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
167
+ "transformer.encoder.layers.4.input_layernorm.weight": "model-00000-of-00005.safetensors",
168
+ "transformer.encoder.layers.4.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
169
+ "transformer.encoder.layers.4.self_attention.query_key_value.weight": "model-00000-of-00005.safetensors",
170
+ "transformer.encoder.layers.4.self_attention.query_key_value.bias": "model-00000-of-00005.safetensors",
171
+ "transformer.encoder.layers.4.self_attention.dense.weight": "model-00000-of-00005.safetensors",
172
+ "transformer.encoder.layers.4.mlp.dense_h_to_4h.weight": "model-00000-of-00005.safetensors",
173
+ "transformer.encoder.layers.4.mlp.dense_4h_to_h.weight": "model-00000-of-00005.safetensors",
174
+ "transformer.embedding.word_embeddings.weight": "model-00004-of-00005.safetensors",
175
+ "transformer.output_layer.weight": "model-00004-of-00005.safetensors",
176
+ "transformer.encoder.final_layernorm.weight": "model-00004-of-00005.safetensors",
177
+ "transformer.encoder.layers.6.input_layernorm.weight": "model-00000-of-00005.safetensors",
178
+ "transformer.encoder.layers.6.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
179
+ "transformer.encoder.layers.6.self_attention.query_key_value.weight": "model-00000-of-00005.safetensors",
180
+ "transformer.encoder.layers.6.self_attention.query_key_value.bias": "model-00000-of-00005.safetensors",
181
+ "transformer.encoder.layers.6.self_attention.dense.weight": "model-00000-of-00005.safetensors",
182
+ "transformer.encoder.layers.6.mlp.dense_h_to_4h.weight": "model-00000-of-00005.safetensors",
183
+ "transformer.encoder.layers.6.mlp.dense_4h_to_h.weight": "model-00000-of-00005.safetensors",
184
+ "transformer.encoder.layers.33.input_layernorm.weight": "model-00003-of-00005.safetensors",
185
+ "transformer.encoder.layers.33.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
186
+ "transformer.encoder.layers.33.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
187
+ "transformer.encoder.layers.33.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
188
+ "transformer.encoder.layers.33.self_attention.dense.weight": "model-00003-of-00005.safetensors",
189
+ "transformer.encoder.layers.33.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
190
+ "transformer.encoder.layers.33.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
191
+ "transformer.encoder.layers.31.input_layernorm.weight": "model-00003-of-00005.safetensors",
192
+ "transformer.encoder.layers.31.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
193
+ "transformer.encoder.layers.31.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
194
+ "transformer.encoder.layers.31.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
195
+ "transformer.encoder.layers.31.self_attention.dense.weight": "model-00003-of-00005.safetensors",
196
+ "transformer.encoder.layers.31.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
197
+ "transformer.encoder.layers.31.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
198
+ "transformer.encoder.layers.21.input_layernorm.weight": "model-00002-of-00005.safetensors",
199
+ "transformer.encoder.layers.21.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
200
+ "transformer.encoder.layers.21.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
201
+ "transformer.encoder.layers.21.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
202
+ "transformer.encoder.layers.21.self_attention.dense.weight": "model-00002-of-00005.safetensors",
203
+ "transformer.encoder.layers.21.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
204
+ "transformer.encoder.layers.21.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
205
+ "transformer.encoder.layers.12.input_layernorm.weight": "model-00001-of-00005.safetensors",
206
+ "transformer.encoder.layers.12.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
207
+ "transformer.encoder.layers.12.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
208
+ "transformer.encoder.layers.12.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
209
+ "transformer.encoder.layers.12.self_attention.dense.weight": "model-00001-of-00005.safetensors",
210
+ "transformer.encoder.layers.12.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
211
+ "transformer.encoder.layers.12.mlp.dense_4h_to_h.weight": "model-00001-of-00005.safetensors",
212
+ "transformer.encoder.layers.16.input_layernorm.weight": "model-00001-of-00005.safetensors",
213
+ "transformer.encoder.layers.16.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
214
+ "transformer.encoder.layers.16.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
215
+ "transformer.encoder.layers.16.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
216
+ "transformer.encoder.layers.16.self_attention.dense.weight": "model-00001-of-00005.safetensors",
217
+ "transformer.encoder.layers.16.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
218
+ "transformer.encoder.layers.16.mlp.dense_4h_to_h.weight": "model-00001-of-00005.safetensors",
219
+ "transformer.encoder.layers.17.input_layernorm.weight": "model-00001-of-00005.safetensors",
220
+ "transformer.encoder.layers.17.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
221
+ "transformer.encoder.layers.17.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
222
+ "transformer.encoder.layers.17.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
223
+ "transformer.encoder.layers.17.self_attention.dense.weight": "model-00001-of-00005.safetensors",
224
+ "transformer.encoder.layers.17.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
225
+ "transformer.encoder.layers.17.mlp.dense_4h_to_h.weight": "model-00001-of-00005.safetensors",
226
+ "transformer.encoder.layers.30.input_layernorm.weight": "model-00003-of-00005.safetensors",
227
+ "transformer.encoder.layers.30.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
228
+ "transformer.encoder.layers.30.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
229
+ "transformer.encoder.layers.30.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
230
+ "transformer.encoder.layers.30.self_attention.dense.weight": "model-00003-of-00005.safetensors",
231
+ "transformer.encoder.layers.30.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
232
+ "transformer.encoder.layers.30.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
233
+ "transformer.encoder.layers.5.input_layernorm.weight": "model-00000-of-00005.safetensors",
234
+ "transformer.encoder.layers.5.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
235
+ "transformer.encoder.layers.5.self_attention.query_key_value.weight": "model-00000-of-00005.safetensors",
236
+ "transformer.encoder.layers.5.self_attention.query_key_value.bias": "model-00000-of-00005.safetensors",
237
+ "transformer.encoder.layers.5.self_attention.dense.weight": "model-00000-of-00005.safetensors",
238
+ "transformer.encoder.layers.5.mlp.dense_h_to_4h.weight": "model-00000-of-00005.safetensors",
239
+ "transformer.encoder.layers.5.mlp.dense_4h_to_h.weight": "model-00000-of-00005.safetensors",
240
+ "transformer.encoder.layers.11.input_layernorm.weight": "model-00001-of-00005.safetensors",
241
+ "transformer.encoder.layers.11.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
242
+ "transformer.encoder.layers.11.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
243
+ "transformer.encoder.layers.11.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
244
+ "transformer.encoder.layers.11.self_attention.dense.weight": "model-00001-of-00005.safetensors",
245
+ "transformer.encoder.layers.11.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
246
+ "transformer.encoder.layers.11.mlp.dense_4h_to_h.weight": "model-00001-of-00005.safetensors",
247
+ "transformer.encoder.layers.3.input_layernorm.weight": "model-00000-of-00005.safetensors",
248
+ "transformer.encoder.layers.3.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
249
+ "transformer.encoder.layers.3.self_attention.query_key_value.weight": "model-00000-of-00005.safetensors",
250
+ "transformer.encoder.layers.3.self_attention.query_key_value.bias": "model-00000-of-00005.safetensors",
251
+ "transformer.encoder.layers.3.self_attention.dense.weight": "model-00000-of-00005.safetensors",
252
+ "transformer.encoder.layers.3.mlp.dense_h_to_4h.weight": "model-00000-of-00005.safetensors",
253
+ "transformer.encoder.layers.3.mlp.dense_4h_to_h.weight": "model-00000-of-00005.safetensors",
254
+ "transformer.encoder.layers.29.input_layernorm.weight": "model-00002-of-00005.safetensors",
255
+ "transformer.encoder.layers.29.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
256
+ "transformer.encoder.layers.29.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
257
+ "transformer.encoder.layers.29.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
258
+ "transformer.encoder.layers.29.self_attention.dense.weight": "model-00002-of-00005.safetensors",
259
+ "transformer.encoder.layers.29.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
260
+ "transformer.encoder.layers.29.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
261
+ "transformer.encoder.layers.23.input_layernorm.weight": "model-00002-of-00005.safetensors",
262
+ "transformer.encoder.layers.23.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
263
+ "transformer.encoder.layers.23.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
264
+ "transformer.encoder.layers.23.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
265
+ "transformer.encoder.layers.23.self_attention.dense.weight": "model-00002-of-00005.safetensors",
266
+ "transformer.encoder.layers.23.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
267
+ "transformer.encoder.layers.23.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
268
+ "transformer.encoder.layers.13.input_layernorm.weight": "model-00001-of-00005.safetensors",
269
+ "transformer.encoder.layers.13.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
270
+ "transformer.encoder.layers.13.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
271
+ "transformer.encoder.layers.13.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
272
+ "transformer.encoder.layers.13.self_attention.dense.weight": "model-00001-of-00005.safetensors",
273
+ "transformer.encoder.layers.13.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
274
+ "transformer.encoder.layers.13.mlp.dense_4h_to_h.weight": "model-00001-of-00005.safetensors",
275
+ "transformer.encoder.layers.15.input_layernorm.weight": "model-00001-of-00005.safetensors",
276
+ "transformer.encoder.layers.15.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
277
+ "transformer.encoder.layers.15.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
278
+ "transformer.encoder.layers.15.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
279
+ "transformer.encoder.layers.15.self_attention.dense.weight": "model-00001-of-00005.safetensors",
280
+ "transformer.encoder.layers.15.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
281
+ "transformer.encoder.layers.15.mlp.dense_4h_to_h.weight": "model-00001-of-00005.safetensors",
282
+ "transformer.encoder.layers.19.input_layernorm.weight": "model-00001-of-00005.safetensors",
283
+ "transformer.encoder.layers.19.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
284
+ "transformer.encoder.layers.19.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
285
+ "transformer.encoder.layers.19.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
286
+ "transformer.encoder.layers.19.self_attention.dense.weight": "model-00001-of-00005.safetensors",
287
+ "transformer.encoder.layers.19.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
288
+ "transformer.encoder.layers.19.mlp.dense_4h_to_h.weight": "model-00001-of-00005.safetensors"
289
+ }
290
+ }
modeling_llama.py ADDED
@@ -0,0 +1,1255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ import math
21
+ from typing import Optional, Tuple, Union, List, Callable, Dict, Any
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
31
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
32
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
33
+ from transformers.modeling_outputs import (
34
+ BaseModelOutputWithPast,
35
+ CausalLMOutputWithPast,
36
+ QuestionAnsweringModelOutput,
37
+ SequenceClassifierOutputWithPast,
38
+ TokenClassifierOutput,
39
+ )
40
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
41
+ from transformers.modeling_utils import PreTrainedModel
42
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
43
+ from transformers.utils import (
44
+ add_start_docstrings,
45
+ add_start_docstrings_to_model_forward,
46
+ is_flash_attn_greater_or_equal_2_10,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from transformers import LlamaConfig
51
+
52
+ logger = logging.get_logger(__name__)
53
+
54
+ _CONFIG_FOR_DOC = "LlamaConfig"
55
+
56
+
57
+ class LlamaRMSNorm(nn.Module):
58
+ def __init__(self, hidden_size, eps=1e-6):
59
+ """
60
+ LlamaRMSNorm is equivalent to T5LayerNorm
61
+ """
62
+ super().__init__()
63
+ self.weight = nn.Parameter(torch.ones(hidden_size))
64
+ self.variance_epsilon = eps
65
+
66
+ def forward(self, hidden_states):
67
+ input_dtype = hidden_states.dtype
68
+ hidden_states = hidden_states.to(torch.float32)
69
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
70
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
71
+ return self.weight * hidden_states.to(input_dtype)
72
+
73
+
74
+ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
75
+
76
+
77
+ class LlamaRotaryEmbedding(nn.Module):
78
+ def __init__(
79
+ self,
80
+ dim=None,
81
+ max_position_embeddings=2048,
82
+ base=10000,
83
+ device=None,
84
+ scaling_factor=1.0,
85
+ rope_type="default",
86
+ config: Optional[LlamaConfig] = None,
87
+ ):
88
+ super().__init__()
89
+ # TODO (joao): remove the `if` below, only used for BC
90
+ self.rope_kwargs = {}
91
+ if config is None:
92
+ logger.warning_once(
93
+ "`LlamaRotaryEmbedding` can now be fully parameterized by passing the model config through the "
94
+ "`config` argument. All other arguments will be removed in v4.45"
95
+ )
96
+ self.rope_kwargs = {
97
+ "rope_type": rope_type,
98
+ "factor": scaling_factor,
99
+ "dim": dim,
100
+ "base": base,
101
+ "max_position_embeddings": max_position_embeddings,
102
+ }
103
+ self.rope_type = rope_type
104
+ self.max_seq_len_cached = max_position_embeddings
105
+ self.original_max_seq_len = max_position_embeddings
106
+ else:
107
+ # BC: "rope_type" was originally "type"
108
+ if config.rope_scaling is not None:
109
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
110
+ else:
111
+ self.rope_type = "default"
112
+ self.max_seq_len_cached = config.max_position_embeddings
113
+ self.original_max_seq_len = config.max_position_embeddings
114
+
115
+ self.config = config
116
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
117
+
118
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
119
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
120
+ self.original_inv_freq = self.inv_freq
121
+
122
+ def _dynamic_frequency_update(self, position_ids, device):
123
+ """
124
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
125
+ 1 - growing beyond the cached sequence length (allow scaling)
126
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
127
+ """
128
+ seq_len = torch.max(position_ids) + 1
129
+ if seq_len > self.max_seq_len_cached: # growth
130
+ inv_freq, self.attention_scaling = self.rope_init_fn(
131
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
132
+ )
133
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
134
+ self.max_seq_len_cached = seq_len
135
+
136
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
137
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
138
+ self.max_seq_len_cached = self.original_max_seq_len
139
+
140
+ @torch.no_grad()
141
+ def forward(self, x, position_ids):
142
+ if "dynamic" in self.rope_type:
143
+ self._dynamic_frequency_update(position_ids, device=x.device)
144
+ # Core RoPE block
145
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
146
+ position_ids_expanded = position_ids[:, None, :].float()
147
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
148
+ device_type = x.device.type
149
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
150
+ with torch.autocast(device_type=device_type, enabled=False):
151
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
152
+ emb = torch.cat((freqs, freqs), dim=-1)
153
+ cos = emb.cos()
154
+ sin = emb.sin()
155
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
156
+ cos = cos * self.attention_scaling
157
+ sin = sin * self.attention_scaling
158
+
159
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
160
+
161
+
162
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
163
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
164
+
165
+ def __init__(self, *args, **kwargs):
166
+ logger.warning_once(
167
+ "`LlamaLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
168
+ "`LlamaRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
169
+ )
170
+ kwargs["rope_type"] = "linear"
171
+ super().__init__(*args, **kwargs)
172
+
173
+
174
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
175
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
176
+
177
+ def __init__(self, *args, **kwargs):
178
+ logger.warning_once(
179
+ "`LlamaDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
180
+ "`LlamaRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
181
+ "__init__)."
182
+ )
183
+ kwargs["rope_type"] = "dynamic"
184
+ super().__init__(*args, **kwargs)
185
+
186
+
187
+ def rotate_half(x):
188
+ """Rotates half the hidden dims of the input."""
189
+ x1 = x[..., : x.shape[-1] // 2]
190
+ x2 = x[..., x.shape[-1] // 2 :]
191
+ return torch.cat((-x2, x1), dim=-1)
192
+
193
+
194
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
195
+ """Applies Rotary Position Embedding to the query and key tensors.
196
+
197
+ Args:
198
+ q (`torch.Tensor`): The query tensor.
199
+ k (`torch.Tensor`): The key tensor.
200
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
201
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
202
+ position_ids (`torch.Tensor`, *optional*):
203
+ Deprecated and unused.
204
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
205
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
206
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
207
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
208
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
209
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
210
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
211
+ Returns:
212
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
213
+ """
214
+ cos = cos.unsqueeze(unsqueeze_dim)
215
+ sin = sin.unsqueeze(unsqueeze_dim)
216
+
217
+ q_embed = (q * cos) + (rotate_half(q) * sin)
218
+ k_embed = (k * cos) + (rotate_half(k) * sin)
219
+ return q_embed, k_embed
220
+
221
+
222
+ class LlamaMLP(nn.Module):
223
+ def __init__(self, config):
224
+ super().__init__()
225
+ self.config = config
226
+ self.hidden_size = config.hidden_size
227
+ self.intermediate_size = config.intermediate_size
228
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
229
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
230
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
231
+ self.act_fn = ACT2FN[config.hidden_act]
232
+
233
+ def forward(self, x):
234
+ if self.config.pretraining_tp > 1:
235
+ slice = self.intermediate_size // self.config.pretraining_tp
236
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
237
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
238
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
239
+
240
+ gate_proj = torch.cat(
241
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
242
+ )
243
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
244
+
245
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
246
+ down_proj = [
247
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
248
+ ]
249
+ down_proj = sum(down_proj)
250
+ else:
251
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
252
+
253
+ return down_proj
254
+
255
+
256
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
257
+ """
258
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
259
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
260
+ """
261
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
262
+ if n_rep == 1:
263
+ return hidden_states
264
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
265
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
266
+
267
+
268
+ class LlamaAttention(nn.Module):
269
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
270
+
271
+ def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
272
+ super().__init__()
273
+ self.config = config
274
+ self.layer_idx = layer_idx
275
+ if layer_idx is None:
276
+ logger.warning_once(
277
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
278
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
279
+ "when creating this class."
280
+ )
281
+
282
+ self.attention_dropout = config.attention_dropout
283
+ self.hidden_size = config.hidden_size
284
+ self.num_heads = config.num_attention_heads
285
+ self.head_dim = self.hidden_size // self.num_heads
286
+ self.num_key_value_heads = config.num_key_value_heads
287
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
288
+ self.max_position_embeddings = config.max_position_embeddings
289
+ self.rope_theta = config.rope_theta
290
+ self.is_causal = True
291
+
292
+ if (self.head_dim * self.num_heads) != self.hidden_size:
293
+ raise ValueError(
294
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
295
+ f" and `num_heads`: {self.num_heads})."
296
+ )
297
+
298
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
299
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
300
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
301
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
302
+
303
+ # TODO (joao): remove in v4.45 (RoPE is computed in the model, not in the decoder layers)
304
+ self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
305
+
306
+ def forward(
307
+ self,
308
+ hidden_states: torch.Tensor,
309
+ attention_mask: Optional[torch.Tensor] = None,
310
+ position_ids: Optional[torch.LongTensor] = None,
311
+ past_key_value: Optional[Cache] = None,
312
+ output_attentions: bool = False,
313
+ use_cache: bool = False,
314
+ cache_position: Optional[torch.LongTensor] = None,
315
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
316
+ **kwargs,
317
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
318
+ bsz, q_len, _ = hidden_states.size()
319
+
320
+ if self.config.pretraining_tp > 1:
321
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
322
+ query_slices = self.q_proj.weight.split(
323
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
324
+ )
325
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
326
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
327
+
328
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
329
+ query_states = torch.cat(query_states, dim=-1)
330
+
331
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
332
+ key_states = torch.cat(key_states, dim=-1)
333
+
334
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
335
+ value_states = torch.cat(value_states, dim=-1)
336
+
337
+ else:
338
+ query_states = self.q_proj(hidden_states)
339
+ key_states = self.k_proj(hidden_states)
340
+ value_states = self.v_proj(hidden_states)
341
+
342
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
343
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
344
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
345
+
346
+ if position_embeddings is None:
347
+ logger.warning_once(
348
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
349
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
350
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
351
+ "removed and `position_embeddings` will be mandatory."
352
+ )
353
+ cos, sin = self.rotary_emb(value_states, position_ids)
354
+ else:
355
+ cos, sin = position_embeddings
356
+
357
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
358
+
359
+ if past_key_value is not None:
360
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
361
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
362
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
363
+
364
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
365
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
366
+
367
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
368
+
369
+ if attention_mask is not None: # no matter the length, we just slice it
370
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
371
+ attn_weights = attn_weights + causal_mask
372
+
373
+ # upcast attention to fp32
374
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
375
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
376
+ attn_output = torch.matmul(attn_weights, value_states)
377
+
378
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
379
+ raise ValueError(
380
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
381
+ f" {attn_output.size()}"
382
+ )
383
+
384
+ attn_output = attn_output.transpose(1, 2).contiguous()
385
+
386
+ attn_output = attn_output.reshape(bsz, q_len, -1)
387
+
388
+ if self.config.pretraining_tp > 1:
389
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
390
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
391
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
392
+ else:
393
+ attn_output = self.o_proj(attn_output)
394
+
395
+ if not output_attentions:
396
+ attn_weights = None
397
+
398
+ return attn_output, attn_weights, past_key_value
399
+
400
+
401
+ class LlamaFlashAttention2(LlamaAttention):
402
+ """
403
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
404
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
405
+ flash attention and deal with padding tokens in case the input contains any of them.
406
+ """
407
+
408
+ def __init__(self, *args, **kwargs):
409
+ super().__init__(*args, **kwargs)
410
+
411
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
412
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
413
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
414
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
415
+
416
+ def forward(
417
+ self,
418
+ hidden_states: torch.Tensor,
419
+ attention_mask: Optional[torch.LongTensor] = None,
420
+ position_ids: Optional[torch.LongTensor] = None,
421
+ past_key_value: Optional[Cache] = None,
422
+ output_attentions: bool = False,
423
+ use_cache: bool = False,
424
+ cache_position: Optional[torch.LongTensor] = None,
425
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
426
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
427
+ if isinstance(past_key_value, StaticCache):
428
+ raise ValueError(
429
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
430
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
431
+ )
432
+
433
+ output_attentions = False
434
+
435
+ bsz, q_len, _ = hidden_states.size()
436
+
437
+ query_states = self.q_proj(hidden_states)
438
+ key_states = self.k_proj(hidden_states)
439
+ value_states = self.v_proj(hidden_states)
440
+
441
+ # Flash attention requires the input to have the shape
442
+ # batch_size x seq_length x head_dim x hidden_dim
443
+ # therefore we just need to keep the original shape
444
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
445
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
446
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
447
+
448
+ if position_embeddings is None:
449
+ logger.warning_once(
450
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
451
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
452
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
453
+ "removed and `position_embeddings` will be mandatory."
454
+ )
455
+ cos, sin = self.rotary_emb(value_states, position_ids)
456
+ else:
457
+ cos, sin = position_embeddings
458
+
459
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
460
+
461
+ if past_key_value is not None:
462
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
463
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
464
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
465
+
466
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
467
+ # to be able to avoid many of these transpose/reshape/view.
468
+ query_states = query_states.transpose(1, 2)
469
+ key_states = key_states.transpose(1, 2)
470
+ value_states = value_states.transpose(1, 2)
471
+
472
+ dropout_rate = self.attention_dropout if self.training else 0.0
473
+
474
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
475
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
476
+ # cast them back in the correct dtype just to be sure everything works as expected.
477
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
478
+ # in fp32. (LlamaRMSNorm handles it correctly)
479
+
480
+ input_dtype = query_states.dtype
481
+ if input_dtype == torch.float32:
482
+ if torch.is_autocast_enabled():
483
+ target_dtype = torch.get_autocast_gpu_dtype()
484
+ # Handle the case where the model is quantized
485
+ elif hasattr(self.config, "_pre_quantization_dtype"):
486
+ target_dtype = self.config._pre_quantization_dtype
487
+ else:
488
+ target_dtype = self.q_proj.weight.dtype
489
+
490
+ logger.warning_once(
491
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
492
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
493
+ f" {target_dtype}."
494
+ )
495
+
496
+ query_states = query_states.to(target_dtype)
497
+ key_states = key_states.to(target_dtype)
498
+ value_states = value_states.to(target_dtype)
499
+
500
+ attn_output = _flash_attention_forward(
501
+ query_states,
502
+ key_states,
503
+ value_states,
504
+ attention_mask,
505
+ q_len,
506
+ dropout=dropout_rate,
507
+ sliding_window=getattr(self, "sliding_window", None),
508
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
509
+ is_causal=self.is_causal,
510
+ )
511
+
512
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
513
+ attn_output = self.o_proj(attn_output)
514
+
515
+ if not output_attentions:
516
+ attn_weights = None
517
+
518
+ return attn_output, attn_weights, past_key_value
519
+
520
+
521
+ class LlamaSdpaAttention(LlamaAttention):
522
+ """
523
+ Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
524
+ `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
525
+ SDPA API.
526
+ """
527
+
528
+ # Adapted from LlamaAttention.forward
529
+ def forward(
530
+ self,
531
+ hidden_states: torch.Tensor,
532
+ attention_mask: Optional[torch.Tensor] = None,
533
+ position_ids: Optional[torch.LongTensor] = None,
534
+ past_key_value: Optional[Cache] = None,
535
+ output_attentions: bool = False,
536
+ use_cache: bool = False,
537
+ cache_position: Optional[torch.LongTensor] = None,
538
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
539
+ **kwargs,
540
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
541
+ if output_attentions:
542
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
543
+ logger.warning_once(
544
+ "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
545
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
546
+ )
547
+ return super().forward(
548
+ hidden_states=hidden_states,
549
+ attention_mask=attention_mask,
550
+ position_ids=position_ids,
551
+ past_key_value=past_key_value,
552
+ output_attentions=output_attentions,
553
+ use_cache=use_cache,
554
+ cache_position=cache_position,
555
+ position_embeddings=position_embeddings,
556
+ )
557
+
558
+ bsz, q_len, _ = hidden_states.size()
559
+ # print(hidden_states.sum())
560
+ query_states = self.q_proj(hidden_states)
561
+ key_states = self.k_proj(hidden_states)
562
+ value_states = self.v_proj(hidden_states)
563
+ # print(query_states.sum() + key_states.sum() + value_states.sum())
564
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
565
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
566
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
567
+
568
+ if position_embeddings is None:
569
+ logger.warning_once(
570
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
571
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
572
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
573
+ "removed and `position_embeddings` will be mandatory."
574
+ )
575
+ cos, sin = self.rotary_emb(value_states, position_ids)
576
+ else:
577
+ cos, sin = position_embeddings
578
+
579
+ # print(query_states.size(), key_states.size())
580
+ # print(query_states.sum(), key_states.sum(), value_states.sum())
581
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
582
+ # print(query_states.sum(), key_states.sum())
583
+ # exit()
584
+
585
+ if past_key_value is not None:
586
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
587
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
588
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
589
+
590
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
591
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
592
+
593
+ causal_mask = attention_mask
594
+ if attention_mask is not None:
595
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
596
+
597
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
598
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
599
+ if query_states.device.type == "cuda" and causal_mask is not None:
600
+ query_states = query_states.contiguous()
601
+ key_states = key_states.contiguous()
602
+ value_states = value_states.contiguous()
603
+
604
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
605
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
606
+ is_causal = True if causal_mask is None and q_len > 1 else False
607
+
608
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
609
+ query_states,
610
+ key_states,
611
+ value_states,
612
+ attn_mask=causal_mask,
613
+ dropout_p=self.attention_dropout if self.training else 0.0,
614
+ is_causal=is_causal,
615
+ )
616
+
617
+ attn_output = attn_output.transpose(1, 2).contiguous()
618
+ attn_output = attn_output.view(bsz, q_len, -1)
619
+
620
+ attn_output = self.o_proj(attn_output)
621
+
622
+ return attn_output, None, past_key_value
623
+
624
+
625
+ LLAMA_ATTENTION_CLASSES = {
626
+ "eager": LlamaAttention,
627
+ "flash_attention_2": LlamaFlashAttention2,
628
+ "sdpa": LlamaSdpaAttention,
629
+ }
630
+
631
+
632
+ class LlamaDecoderLayer(nn.Module):
633
+ def __init__(self, config: LlamaConfig, layer_idx: int):
634
+ super().__init__()
635
+ self.hidden_size = config.hidden_size
636
+
637
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
638
+ self.mlp = LlamaMLP(config)
639
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
640
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
641
+
642
+ def forward(
643
+ self,
644
+ hidden_states: torch.Tensor,
645
+ attention_mask: Optional[torch.Tensor] = None,
646
+ position_ids: Optional[torch.LongTensor] = None,
647
+ past_key_value: Optional[Cache] = None,
648
+ output_attentions: Optional[bool] = False,
649
+ use_cache: Optional[bool] = False,
650
+ cache_position: Optional[torch.LongTensor] = None,
651
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
652
+ **kwargs,
653
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
654
+ """
655
+ Args:
656
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
657
+ attention_mask (`torch.FloatTensor`, *optional*):
658
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
659
+ query_sequence_length, key_sequence_length)` if default attention is used.
660
+ output_attentions (`bool`, *optional*):
661
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
662
+ returned tensors for more detail.
663
+ use_cache (`bool`, *optional*):
664
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
665
+ (see `past_key_values`).
666
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
667
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
668
+ Indices depicting the position of the input sequence tokens in the sequence
669
+ position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
670
+ Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
671
+ with `head_dim` being the embedding dimension of each attention head.
672
+ kwargs (`dict`, *optional*):
673
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
674
+ into the model
675
+ """
676
+ residual = hidden_states
677
+ # print(hidden_states.float().sum())
678
+ hidden_states = self.input_layernorm(hidden_states)
679
+ # print(hidden_states.float().sum())
680
+
681
+ # Self Attention
682
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
683
+ hidden_states=hidden_states,
684
+ attention_mask=attention_mask,
685
+ position_ids=position_ids,
686
+ past_key_value=past_key_value,
687
+ output_attentions=output_attentions,
688
+ use_cache=use_cache,
689
+ cache_position=cache_position,
690
+ position_embeddings=position_embeddings,
691
+ **kwargs,
692
+ )
693
+ hidden_states = residual + hidden_states
694
+
695
+ # Fully Connected
696
+ residual = hidden_states
697
+ hidden_states = self.post_attention_layernorm(hidden_states)
698
+ hidden_states = self.mlp(hidden_states)
699
+ hidden_states = residual + hidden_states
700
+
701
+ outputs = (hidden_states,)
702
+
703
+ if output_attentions:
704
+ outputs += (self_attn_weights,)
705
+
706
+ if use_cache:
707
+ outputs += (present_key_value,)
708
+
709
+ return outputs
710
+
711
+
712
+ LLAMA_START_DOCSTRING = r"""
713
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
714
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
715
+ etc.)
716
+
717
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
718
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
719
+ and behavior.
720
+
721
+ Parameters:
722
+ config ([`LlamaConfig`]):
723
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
724
+ load the weights associated with the model, only the configuration. Check out the
725
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
726
+ """
727
+
728
+
729
+ @add_start_docstrings(
730
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
731
+ LLAMA_START_DOCSTRING,
732
+ )
733
+ class LlamaPreTrainedModel(PreTrainedModel):
734
+ config_class = LlamaConfig
735
+ base_model_prefix = "model"
736
+ supports_gradient_checkpointing = True
737
+ _no_split_modules = ["LlamaDecoderLayer"]
738
+ _skip_keys_device_placement = ["past_key_values"]
739
+ _supports_flash_attn_2 = True
740
+ _supports_sdpa = True
741
+ _supports_cache_class = True
742
+ _supports_quantized_cache = True
743
+ _supports_static_cache = True
744
+
745
+ def _init_weights(self, module):
746
+ std = self.config.initializer_range
747
+ if isinstance(module, nn.Linear):
748
+ module.weight.data.normal_(mean=0.0, std=std)
749
+ if module.bias is not None:
750
+ module.bias.data.zero_()
751
+ elif isinstance(module, nn.Embedding):
752
+ module.weight.data.normal_(mean=0.0, std=std)
753
+ if module.padding_idx is not None:
754
+ module.weight.data[module.padding_idx].zero_()
755
+
756
+
757
+ LLAMA_INPUTS_DOCSTRING = r"""
758
+ Args:
759
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
760
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
761
+ it.
762
+
763
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
764
+ [`PreTrainedTokenizer.__call__`] for details.
765
+
766
+ [What are input IDs?](../glossary#input-ids)
767
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
768
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
769
+
770
+ - 1 for tokens that are **not masked**,
771
+ - 0 for tokens that are **masked**.
772
+
773
+ [What are attention masks?](../glossary#attention-mask)
774
+
775
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
776
+ [`PreTrainedTokenizer.__call__`] for details.
777
+
778
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
779
+ `past_key_values`).
780
+
781
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
782
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
783
+ information on the default strategy.
784
+
785
+ - 1 indicates the head is **not masked**,
786
+ - 0 indicates the head is **masked**.
787
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
788
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
789
+ config.n_positions - 1]`.
790
+
791
+ [What are position IDs?](../glossary#position-ids)
792
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
793
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
794
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
795
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
796
+
797
+ Two formats are allowed:
798
+ - a [`~cache_utils.Cache`] instance;
799
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
800
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
801
+ cache format.
802
+
803
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
804
+ legacy cache format will be returned.
805
+
806
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
807
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
808
+ of shape `(batch_size, sequence_length)`.
809
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
810
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
811
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
812
+ model's internal embedding lookup matrix.
813
+ use_cache (`bool`, *optional*):
814
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
815
+ `past_key_values`).
816
+ output_attentions (`bool`, *optional*):
817
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
818
+ tensors for more detail.
819
+ output_hidden_states (`bool`, *optional*):
820
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
821
+ more detail.
822
+ return_dict (`bool`, *optional*):
823
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
824
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
825
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
826
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
827
+ the complete sequence length.
828
+ """
829
+
830
+
831
+ @add_start_docstrings(
832
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
833
+ LLAMA_START_DOCSTRING,
834
+ )
835
+ class LlamaModel(LlamaPreTrainedModel):
836
+ """
837
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
838
+
839
+ Args:
840
+ config: LlamaConfig
841
+ """
842
+
843
+ def __init__(self, config: LlamaConfig):
844
+ super().__init__(config)
845
+ self.padding_idx = config.pad_token_id
846
+ self.vocab_size = config.vocab_size
847
+
848
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
849
+ self.layers = nn.ModuleList(
850
+ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
851
+ )
852
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
853
+ self.rotary_emb = LlamaRotaryEmbedding(config=config)
854
+ self.gradient_checkpointing = False
855
+
856
+ # Initialize weights and apply final processing
857
+ self.post_init()
858
+
859
+ def get_input_embeddings(self):
860
+ return self.embed_tokens
861
+
862
+ def set_input_embeddings(self, value):
863
+ self.embed_tokens = value
864
+
865
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
866
+ def forward(
867
+ self,
868
+ input_ids: torch.LongTensor = None,
869
+ attention_mask: Optional[torch.Tensor] = None,
870
+ position_ids: Optional[torch.LongTensor] = None,
871
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
872
+ inputs_embeds: Optional[torch.FloatTensor] = None,
873
+ use_cache: Optional[bool] = None,
874
+ output_attentions: Optional[bool] = None,
875
+ output_hidden_states: Optional[bool] = None,
876
+ return_dict: Optional[bool] = None,
877
+ cache_position: Optional[torch.LongTensor] = None,
878
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
879
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
880
+ output_hidden_states = (
881
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
882
+ )
883
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
884
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
885
+
886
+ if (input_ids is None) ^ (inputs_embeds is not None):
887
+ raise ValueError(
888
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
889
+ )
890
+
891
+ if self.gradient_checkpointing and self.training and use_cache:
892
+ logger.warning_once(
893
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
894
+ )
895
+ use_cache = False
896
+
897
+ if inputs_embeds is None:
898
+ inputs_embeds = self.embed_tokens(input_ids)
899
+
900
+ return_legacy_cache = False
901
+ if (
902
+ use_cache and not isinstance(past_key_values, Cache) and not self.training
903
+ ): # kept for BC (non `Cache` `past_key_values` inputs)
904
+ return_legacy_cache = True
905
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
906
+ logger.warning_once(
907
+ "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
908
+ "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
909
+ )
910
+
911
+ if cache_position is None:
912
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
913
+ cache_position = torch.arange(
914
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
915
+ )
916
+ if position_ids is None:
917
+ position_ids = cache_position.unsqueeze(0)
918
+
919
+ causal_mask = self._update_causal_mask(
920
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
921
+ )
922
+ hidden_states = inputs_embeds
923
+
924
+ # create position embeddings to be shared across the decoder layers
925
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
926
+
927
+ # decoder layers
928
+ all_hidden_states = () if output_hidden_states else None
929
+ all_self_attns = () if output_attentions else None
930
+ next_decoder_cache = None
931
+
932
+ for decoder_layer in self.layers:
933
+ if output_hidden_states:
934
+ all_hidden_states += (hidden_states,)
935
+
936
+ if self.gradient_checkpointing and self.training:
937
+ layer_outputs = self._gradient_checkpointing_func(
938
+ decoder_layer.__call__,
939
+ hidden_states,
940
+ causal_mask,
941
+ position_ids,
942
+ past_key_values,
943
+ output_attentions,
944
+ use_cache,
945
+ cache_position,
946
+ position_embeddings,
947
+ )
948
+ else:
949
+ layer_outputs = decoder_layer(
950
+ hidden_states,
951
+ attention_mask=causal_mask,
952
+ position_ids=position_ids,
953
+ past_key_value=past_key_values,
954
+ output_attentions=output_attentions,
955
+ use_cache=use_cache,
956
+ cache_position=cache_position,
957
+ position_embeddings=position_embeddings,
958
+ )
959
+
960
+ hidden_states = layer_outputs[0]
961
+
962
+ if use_cache:
963
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
964
+
965
+ if output_attentions:
966
+ all_self_attns += (layer_outputs[1],)
967
+
968
+ hidden_states = self.norm(hidden_states)
969
+
970
+ # add hidden states from the last decoder layer
971
+ if output_hidden_states:
972
+ all_hidden_states += (hidden_states,)
973
+
974
+ next_cache = next_decoder_cache if use_cache else None
975
+ if return_legacy_cache:
976
+ next_cache = next_cache.to_legacy_cache()
977
+
978
+ if not return_dict:
979
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
980
+ return BaseModelOutputWithPast(
981
+ last_hidden_state=hidden_states,
982
+ past_key_values=next_cache,
983
+ hidden_states=all_hidden_states,
984
+ attentions=all_self_attns,
985
+ )
986
+
987
+ def _update_causal_mask(
988
+ self,
989
+ attention_mask: torch.Tensor,
990
+ input_tensor: torch.Tensor,
991
+ cache_position: torch.Tensor,
992
+ past_key_values: Cache,
993
+ output_attentions: bool,
994
+ ):
995
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
996
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
997
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
998
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
999
+
1000
+ if self.config._attn_implementation == "flash_attention_2":
1001
+ if attention_mask is not None and 0.0 in attention_mask:
1002
+ return attention_mask
1003
+ return None
1004
+
1005
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1006
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1007
+ # to infer the attention mask.
1008
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1009
+ using_static_cache = isinstance(past_key_values, StaticCache)
1010
+
1011
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1012
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1013
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1014
+ attention_mask,
1015
+ inputs_embeds=input_tensor,
1016
+ past_key_values_length=past_seen_tokens,
1017
+ is_training=self.training,
1018
+ ):
1019
+ return None
1020
+
1021
+ dtype, device = input_tensor.dtype, input_tensor.device
1022
+ min_dtype = torch.finfo(dtype).min
1023
+ sequence_length = input_tensor.shape[1]
1024
+ if using_static_cache:
1025
+ target_length = past_key_values.get_max_length()
1026
+ else:
1027
+ target_length = (
1028
+ attention_mask.shape[-1]
1029
+ if isinstance(attention_mask, torch.Tensor)
1030
+ else past_seen_tokens + sequence_length + 1
1031
+ )
1032
+
1033
+ if attention_mask is not None and attention_mask.dim() == 4:
1034
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
1035
+ if attention_mask.max() != 0:
1036
+ raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
1037
+ causal_mask = attention_mask
1038
+ else:
1039
+ causal_mask = torch.full(
1040
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
1041
+ )
1042
+ if sequence_length != 1:
1043
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1044
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1045
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
1046
+ if attention_mask is not None:
1047
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1048
+ mask_length = attention_mask.shape[-1]
1049
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
1050
+ padding_mask = padding_mask == 0
1051
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
1052
+ padding_mask, min_dtype
1053
+ )
1054
+ if (
1055
+ self.config._attn_implementation == "sdpa"
1056
+ and attention_mask is not None
1057
+ and attention_mask.device.type == "cuda"
1058
+ and not output_attentions
1059
+ ):
1060
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1061
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1062
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1063
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1064
+
1065
+ return causal_mask
1066
+
1067
+
1068
+ class LlamaForCausalLM(LlamaPreTrainedModel):
1069
+ _tied_weights_keys = ["lm_head.weight"]
1070
+
1071
+ def __init__(self, config):
1072
+ super().__init__(config)
1073
+ self.model = LlamaModel(config)
1074
+ self.vocab_size = config.vocab_size
1075
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1076
+
1077
+ # Initialize weights and apply final processing
1078
+ self.post_init()
1079
+
1080
+ def get_input_embeddings(self):
1081
+ return self.model.embed_tokens
1082
+
1083
+ def set_input_embeddings(self, value):
1084
+ self.model.embed_tokens = value
1085
+
1086
+ def get_output_embeddings(self):
1087
+ return self.lm_head
1088
+
1089
+ def set_output_embeddings(self, new_embeddings):
1090
+ self.lm_head = new_embeddings
1091
+
1092
+ def set_decoder(self, decoder):
1093
+ self.model = decoder
1094
+
1095
+ def get_decoder(self):
1096
+ return self.model
1097
+
1098
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1099
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1100
+ def forward(
1101
+ self,
1102
+ input_ids: torch.LongTensor = None,
1103
+ attention_mask: Optional[torch.Tensor] = None,
1104
+ position_ids: Optional[torch.LongTensor] = None,
1105
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1106
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1107
+ labels: Optional[torch.LongTensor] = None,
1108
+ use_cache: Optional[bool] = None,
1109
+ output_attentions: Optional[bool] = None,
1110
+ output_hidden_states: Optional[bool] = None,
1111
+ return_dict: Optional[bool] = None,
1112
+ cache_position: Optional[torch.LongTensor] = None,
1113
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1114
+ r"""
1115
+ Args:
1116
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1117
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1118
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1119
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1120
+
1121
+ Returns:
1122
+
1123
+ Example:
1124
+
1125
+ ```python
1126
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1127
+
1128
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
1129
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
1130
+
1131
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1132
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1133
+
1134
+ >>> # Generate
1135
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1136
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1137
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1138
+ ```"""
1139
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1140
+ output_hidden_states = (
1141
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1142
+ )
1143
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1144
+
1145
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1146
+ outputs = self.model(
1147
+ input_ids=input_ids,
1148
+ attention_mask=attention_mask,
1149
+ position_ids=position_ids,
1150
+ past_key_values=past_key_values,
1151
+ inputs_embeds=inputs_embeds,
1152
+ use_cache=use_cache,
1153
+ output_attentions=output_attentions,
1154
+ output_hidden_states=output_hidden_states,
1155
+ return_dict=return_dict,
1156
+ cache_position=cache_position,
1157
+ )
1158
+
1159
+ hidden_states = outputs[0]
1160
+ if self.config.pretraining_tp > 1:
1161
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1162
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1163
+ logits = torch.cat(logits, dim=-1)
1164
+ else:
1165
+ logits = self.lm_head(hidden_states)
1166
+ logits = logits.float()
1167
+
1168
+ loss = None
1169
+ if labels is not None:
1170
+ # Shift so that tokens < n predict n
1171
+ shift_logits = logits[..., :-1, :].contiguous()
1172
+ shift_labels = labels[..., 1:].contiguous()
1173
+ # Flatten the tokens
1174
+ loss_fct = CrossEntropyLoss()
1175
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1176
+ shift_labels = shift_labels.view(-1)
1177
+ # Enable model parallelism
1178
+ shift_labels = shift_labels.to(shift_logits.device)
1179
+ loss = loss_fct(shift_logits, shift_labels)
1180
+
1181
+ if not return_dict:
1182
+ output = (logits,) + outputs[1:]
1183
+ return (loss,) + output if loss is not None else output
1184
+
1185
+ return CausalLMOutputWithPast(
1186
+ loss=loss,
1187
+ logits=logits,
1188
+ past_key_values=outputs.past_key_values,
1189
+ hidden_states=outputs.hidden_states,
1190
+ attentions=outputs.attentions,
1191
+ )
1192
+
1193
+ def prepare_inputs_for_generation(
1194
+ self,
1195
+ input_ids,
1196
+ past_key_values=None,
1197
+ attention_mask=None,
1198
+ inputs_embeds=None,
1199
+ cache_position=None,
1200
+ position_ids=None,
1201
+ use_cache=True,
1202
+ **kwargs,
1203
+ ):
1204
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
1205
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
1206
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
1207
+ if past_key_values is not None:
1208
+ if inputs_embeds is not None: # Exception 1
1209
+ input_ids = input_ids[:, -cache_position.shape[0] :]
1210
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
1211
+ input_ids = input_ids[:, cache_position]
1212
+
1213
+ if attention_mask is not None and position_ids is None:
1214
+ # create position_ids on the fly for batch generation
1215
+ position_ids = attention_mask.long().cumsum(-1) - 1
1216
+ position_ids.masked_fill_(attention_mask == 0, 1)
1217
+ if past_key_values:
1218
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1219
+
1220
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1221
+ if inputs_embeds is not None and cache_position[0] == 0:
1222
+ model_inputs = {"inputs_embeds": inputs_embeds}
1223
+ else:
1224
+ model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
1225
+
1226
+ model_inputs.update(
1227
+ {
1228
+ "position_ids": position_ids,
1229
+ "cache_position": cache_position,
1230
+ "past_key_values": past_key_values,
1231
+ "use_cache": use_cache,
1232
+ "attention_mask": attention_mask,
1233
+ }
1234
+ )
1235
+ return model_inputs
1236
+
1237
+ @torch.inference_mode()
1238
+ def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
1239
+ max_length: int = 65536, num_beams=1, do_sample=True, top_p=0.7, temperature=0.95,
1240
+ **kwargs):
1241
+ if history is None:
1242
+ history = []
1243
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1244
+ "temperature": temperature, **kwargs}
1245
+ inputs = tokenizer.build_chat_input(query, history=history, role=role)
1246
+ del inputs['token_type_ids']
1247
+ # print(inputs)
1248
+ inputs = inputs.to(self.device)
1249
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
1250
+ tokenizer.get_command("<|observation|>")]
1251
+ outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
1252
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1253
+ response = tokenizer.decode(outputs).strip()
1254
+ history.append({"role": role, "content": query})
1255
+ return response, history
tiktoken_tokenizer.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import regex as re
2
+ import base64
3
+ import tiktoken
4
+ import os
5
+ import json
6
+ from transformers import PreTrainedTokenizer
7
+
8
+ class BaseTokenizer(PreTrainedTokenizer):
9
+ """Abstract class for tokenizer."""
10
+
11
+ def __init__(self, **kwargs):
12
+ super().__init__()
13
+
14
+ @property
15
+ def add_prefix_space(self):
16
+ return False
17
+
18
+ @property
19
+ def vocab_size(self):
20
+ raise NotImplemented
21
+
22
+ def tokenize(self, text):
23
+ raise NotImplemented
24
+
25
+ def detokenize(self, token_ids, ignore_special_tokens=True):
26
+ raise NotImplemented
27
+
28
+ def build_single_message(self, role, metadata, message):
29
+ assert role in ["system", "user", "assistant", "observation"], role
30
+ role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
31
+ message_tokens = self.tokenizer.encode(message, disallowed_special=())
32
+ tokens = role_tokens + message_tokens
33
+ return tokens
34
+
35
+ def build_chat_input(self, query, history=None, role="user", metadata=""):
36
+ if history is None:
37
+ history = []
38
+ input_ids = []
39
+ for item in history:
40
+ content = item["content"]
41
+ if item["role"] == "system" and "tools" in item:
42
+ content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
43
+ input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
44
+ input_ids.extend(self.build_single_message(role, metadata, query))
45
+ input_ids.extend([self.get_command("<|assistant|>")])
46
+ return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
47
+
48
+ @property
49
+ def eos_id(self):
50
+ raise NotImplemented
51
+
52
+ def get_command(self, token):
53
+ return NotImplemented
54
+
55
+ class TikTokenizer(BaseTokenizer):
56
+ vocab_files_names = {"vocab_file": "tokenizer.tiktoken"}
57
+
58
+ def __init__(self, vocab_file, **kwargs):
59
+ pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
60
+ self.pat_str = re.compile(pat_str)
61
+
62
+ self.b64_vocab = {}
63
+ mergeable_ranks = {}
64
+ with open(vocab_file) as f:
65
+ for line in f:
66
+ token, rank = line.strip().split()
67
+ rank = int(rank)
68
+ token = base64.b64decode(token)
69
+ mergeable_ranks[token] = rank
70
+ self.b64_vocab['%s' % token] = rank
71
+
72
+ self.special_tokens = ["<|endoftext|>", "[MASK]", "[gMASK]", "[sMASK]", "<sop>", "<eop>", "<|system|>",
73
+ "<|user|>", "<|assistant|>", "<|observation|>"]
74
+ self.special_tokens = {
75
+ token: idx for idx, token in enumerate(self.special_tokens, start=len(mergeable_ranks))
76
+ }
77
+ self.special_token_ids = {idx: token for token, idx in self.special_tokens.items()}
78
+
79
+ self.tokenizer = tiktoken.Encoding(
80
+ name="my_tokenizer",
81
+ pat_str=pat_str,
82
+ mergeable_ranks=mergeable_ranks,
83
+ special_tokens=self.special_tokens
84
+ )
85
+ self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
86
+ self.n_words = len(self.decoder) + len(self.special_tokens)
87
+ super().__init__()
88
+
89
+ @property
90
+ def add_prefix_space(self):
91
+ return False
92
+
93
+ def tokenize(self, text, add_special_tokens=True):
94
+ ids = self.encode(text, add_special_tokens=add_special_tokens)
95
+ return [self.convert_id_to_token(_id) for _id in ids]
96
+
97
+ def detokenize(self, ids, ignore_special_tokens=True):
98
+ if ignore_special_tokens:
99
+ ids = [idx for idx in ids if idx not in self.special_token_ids]
100
+ return self.tokenizer.decode(ids)
101
+
102
+ def encode(self, text, add_special_tokens=True):
103
+ ids = self.tokenizer.encode(text, disallowed_special=(), allowed_special="all")
104
+ if add_special_tokens:
105
+ ids = [self.special_tokens["[gMASK]"], self.special_tokens["<sop>"]] + ids
106
+ return ids
107
+
108
+ def decode(self, ids, skip_special_tokens=False, clean_up_tokenization_spaces=False):
109
+ if type(ids) is int:
110
+ ids = [ids]
111
+ return self.detokenize(ids, ignore_special_tokens=skip_special_tokens)
112
+
113
+ def encode_pieces(self, text):
114
+ ids = self.tokenizer.encode(text, disallowed_special=())
115
+ return list(map(lambda x: self.decoder[x].detokenize('utf-8', errors='replace'), ids))
116
+
117
+ @property
118
+ def vocab_size(self):
119
+ return self.n_words
120
+
121
+ @property
122
+ def eos_token_id(self):
123
+ return self.special_tokens["<|endoftext|>"]
124
+
125
+ def convert_token_to_id(self, token):
126
+ """ Converts a token (str) in an id using the vocab. """
127
+ if token in self.special_tokens:
128
+ return self.special_tokens[token]
129
+ # assert type(token) == str, "type of token (%s) is %s" % (token, type(token))
130
+ # ids = self.tokenizer.encode(token, disallowed_special=())
131
+ if token in self.b64_vocab:
132
+ return self.b64_vocab[token]
133
+ # if len(ids) == 1:
134
+ # return ids[0]
135
+ else:
136
+ raise RuntimeError(f"{token} is not a single token")
137
+
138
+ def _convert_token_to_id(self, token):
139
+ return self.convert_token_to_id(token)
140
+
141
+ def convert_id_to_token(self, index):
142
+ if index in self.special_token_ids:
143
+ return self.special_token_ids[index]
144
+ return '%s' % self.decoder[index]
145
+ # try:
146
+ # return self.decoder[index].decode('utf-8')
147
+ # except Exception as e:
148
+ # print("Exception: %s for (%d)%s" % (e, index, self.decoder[index]))
149
+ # return ""
150
+ #return self.decoder[index].detokenize('utf-8', errors='replace')
151
+
152
+ def _convert_id_to_token(self, index):
153
+ return self.convert_id_to_token(index)
154
+
155
+ def get_command(self, token):
156
+ return self.special_tokens[token]
157
+
158
+ def get_vocab(self):
159
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
160
+ return vocab
tokenizer.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name_or_path": "THUDM/chatglm4-130b",
3
+ "remove_space": false,
4
+ "do_lower_case": false,
5
+ "tokenizer_class": "TikTokenizer",
6
+ "auto_map": {
7
+ "AutoTokenizer": [
8
+ null,
9
+ "tiktoken_tokenizer.TikTokenizer"
10
+ ]
11
+ }
12
+ }