NerfLongshot commited on
Commit
86f35d6
1 Parent(s): 0c23b80

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: videomae-base-finetuned-sign-subset
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # videomae-base-finetuned-sign-subset
16
+
17
+ This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 3.3672
20
+ - Accuracy: 0.1905
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 2
41
+ - eval_batch_size: 2
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 4
44
+ - total_train_batch_size: 8
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - training_steps: 270
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
54
+ | No log | 0.04 | 11 | 2.4220 | 0.0870 |
55
+ | 2.3491 | 1.04 | 22 | 2.6315 | 0.0 |
56
+ | 2.3491 | 2.04 | 33 | 2.6680 | 0.0435 |
57
+ | 2.2285 | 3.04 | 44 | 2.8487 | 0.1304 |
58
+ | 2.2285 | 4.04 | 55 | 3.0361 | 0.0870 |
59
+ | 1.996 | 5.04 | 66 | 3.0258 | 0.1304 |
60
+ | 1.996 | 6.04 | 77 | 3.2125 | 0.1304 |
61
+ | 1.6956 | 7.04 | 88 | 3.2063 | 0.1304 |
62
+ | 1.6956 | 8.04 | 99 | 3.1919 | 0.1304 |
63
+ | 1.5088 | 9.04 | 110 | 3.1940 | 0.1304 |
64
+ | 1.3777 | 10.04 | 121 | 3.3180 | 0.1739 |
65
+ | 1.3777 | 11.04 | 132 | 3.3112 | 0.1304 |
66
+ | 1.1509 | 12.04 | 143 | 3.3400 | 0.1304 |
67
+ | 1.1509 | 13.04 | 154 | 3.2550 | 0.1739 |
68
+ | 0.9036 | 14.04 | 165 | 3.3682 | 0.1304 |
69
+ | 0.9036 | 15.04 | 176 | 3.3775 | 0.1304 |
70
+ | 0.8303 | 16.04 | 187 | 3.4701 | 0.1304 |
71
+ | 0.8303 | 17.04 | 198 | 3.4340 | 0.1739 |
72
+ | 0.6683 | 18.04 | 209 | 3.4843 | 0.1304 |
73
+ | 0.5126 | 19.04 | 220 | 3.3552 | 0.2174 |
74
+ | 0.5126 | 20.04 | 231 | 3.3702 | 0.2609 |
75
+ | 0.3728 | 21.04 | 242 | 3.3871 | 0.2609 |
76
+ | 0.3728 | 22.04 | 253 | 3.3565 | 0.2609 |
77
+ | 0.3291 | 23.04 | 264 | 3.3861 | 0.3043 |
78
+ | 0.3291 | 24.02 | 270 | 3.3876 | 0.3043 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.26.1
84
+ - Pytorch 1.13.1+cu116
85
+ - Datasets 2.9.0
86
+ - Tokenizers 0.13.2