--- base_model: sentence-transformers/all-MiniLM-L12-v2 library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:100000 - loss:CosineSimilarityLoss widget: - source_sentence: The church has granite statues of Jesus and the Apostles adorning its porch . sentences: - There were no statues in the church . - L' Afrique du sud et le reste de l' Afrique sont les mêmes . - Tours on foot are a great way to see LA . - source_sentence: Au Centre du réseau routier de la région , Alicante est également une base logique pour les automobilistes et pour les liaisons ferroviaires et ferroviaires . sentences: - Alicante est fréquentée par les automobilistes et les touristes . - Les examinateurs ont passé sept mois à étudier leurs conclusions . - Ferries to the island depart from the central station every 2 hours . - source_sentence: Scheduled to reopen in 2002 or 2003 , the Malibu site will house only the Getty holdings in Greek and Roman antiquities , some of which date as far back as 3000 b.c. sentences: - C' est impossible d' avoir des billets pour les enregistrements télévisés . - The Getty holdings were taken hold of thanks to the researchers ' effort . - After the first of may ends the peak season for ferries . - source_sentence: Une nouvelle recherche relie ces bactéries parodontale aux maladies cardiaques , au diabète , aux bébés à faible poids de naissance , et à d' autres saletés que vous attendez des bactéries qui se déchaînent dans le sang . sentences: - Le prix des actions de Caterpillar a baissé en 1991 quand ils ont fait grève . - Ils agissent comme chaque année est la même . - La recherche indique qu' il n' y a pas de lien entre les bactéries parodontale et les maladies cardiaques ou le diabète . - source_sentence: L' ancien n' est pas une classification juridique qui entraîne une perte automatique de ces droits . sentences: - Some degree of uncertainty is inherent in free-market systems . - Les villes grecques d' Anatolie ont été exclues de l' appartenance à la Confédération Delian . - Ils voulaient plaider pour les personnes âgées . model-index: - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: snli dev type: snli-dev metrics: - type: pearson_cosine value: 0.35421287329686374 name: Pearson Cosine - type: spearman_cosine value: 0.3592670991851331 name: Spearman Cosine - type: pearson_manhattan value: 0.34936411192844985 name: Pearson Manhattan - type: spearman_manhattan value: 0.3583327923327215 name: Spearman Manhattan - type: pearson_euclidean value: 0.34982920048695176 name: Pearson Euclidean - type: spearman_euclidean value: 0.35926709915022625 name: Spearman Euclidean - type: pearson_dot value: 0.3542128787197555 name: Pearson Dot - type: spearman_dot value: 0.35926727022169175 name: Spearman Dot - type: pearson_max value: 0.3542128787197555 name: Pearson Max - type: spearman_max value: 0.35926727022169175 name: Spearman Max --- # SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Nessrine9/finetuned-snli-MiniLM-L12-v2-100k-en-fr") # Run inference sentences = [ "L' ancien n' est pas une classification juridique qui entraîne une perte automatique de ces droits .", 'Ils voulaient plaider pour les personnes âgées .', "Les villes grecques d' Anatolie ont été exclues de l' appartenance à la Confédération Delian .", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `snli-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:-------------------|:-----------| | pearson_cosine | 0.3542 | | spearman_cosine | 0.3593 | | pearson_manhattan | 0.3494 | | spearman_manhattan | 0.3583 | | pearson_euclidean | 0.3498 | | spearman_euclidean | 0.3593 | | pearson_dot | 0.3542 | | spearman_dot | 0.3593 | | pearson_max | 0.3542 | | **spearman_max** | **0.3593** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 100,000 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:-----------------| | We 're off ! " | We 're not headed off . | 1.0 | | Il y en a eu un ici récemment qui me vient à l' esprit que c' est à propos d' une femme que c' est ridicule je veux dire que c' est presque euh ce serait drôle si ce n' était pas si triste je veux dire cette femme cette femme est sortie et a engagé quelqu' un à | Cette femme a engagé quelqu' un récemment pour le faire et s' est fait prendre immédiatement . | 0.5 | | Gentilello a précisé qu' il n' avait pas critiqué le processus d' examen par les pairs , mais que les panels qui examinent les interventions en matière d' alcool dans l' eds devraient inclure des représentants de la médecine d' urgence . | Gentilello S' est ensuite battu avec un psychiatre sur le parking . | 0.5 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 4 - `fp16`: True - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | snli-dev_spearman_max | |:------:|:-----:|:-------------:|:---------------------:| | 0.08 | 500 | 0.1948 | 0.0484 | | 0.16 | 1000 | 0.1752 | 0.1177 | | 0.24 | 1500 | 0.1727 | 0.1136 | | 0.32 | 2000 | 0.1668 | 0.2050 | | 0.4 | 2500 | 0.1673 | 0.2227 | | 0.48 | 3000 | 0.1651 | 0.1760 | | 0.56 | 3500 | 0.1619 | 0.2195 | | 0.64 | 4000 | 0.1625 | 0.2308 | | 0.72 | 4500 | 0.1563 | 0.2405 | | 0.8 | 5000 | 0.1598 | 0.2773 | | 0.88 | 5500 | 0.1589 | 0.2359 | | 0.96 | 6000 | 0.1587 | 0.2084 | | 1.0 | 6250 | - | 0.2615 | | 1.04 | 6500 | 0.158 | 0.2958 | | 1.12 | 7000 | 0.1557 | 0.2887 | | 1.2 | 7500 | 0.1544 | 0.2960 | | 1.28 | 8000 | 0.1535 | 0.2977 | | 1.3600 | 8500 | 0.1559 | 0.2546 | | 1.44 | 9000 | 0.1518 | 0.3201 | | 1.52 | 9500 | 0.1551 | 0.2894 | | 1.6 | 10000 | 0.149 | 0.2981 | | 1.6800 | 10500 | 0.152 | 0.3140 | | 1.76 | 11000 | 0.1484 | 0.3056 | | 1.8400 | 11500 | 0.1497 | 0.3051 | | 1.92 | 12000 | 0.1522 | 0.2893 | | 2.0 | 12500 | 0.1503 | 0.2944 | | 2.08 | 13000 | 0.1496 | 0.3039 | | 2.16 | 13500 | 0.1462 | 0.3314 | | 2.24 | 14000 | 0.1505 | 0.2470 | | 2.32 | 14500 | 0.1457 | 0.3081 | | 2.4 | 15000 | 0.1478 | 0.3204 | | 2.48 | 15500 | 0.1464 | 0.3248 | | 2.56 | 16000 | 0.1442 | 0.3360 | | 2.64 | 16500 | 0.1437 | 0.3418 | | 2.7200 | 17000 | 0.1416 | 0.3496 | | 2.8 | 17500 | 0.1434 | 0.3283 | | 2.88 | 18000 | 0.146 | 0.3246 | | 2.96 | 18500 | 0.1448 | 0.3352 | | 3.0 | 18750 | - | 0.3248 | | 3.04 | 19000 | 0.1445 | 0.3394 | | 3.12 | 19500 | 0.1423 | 0.3430 | | 3.2 | 20000 | 0.1415 | 0.3410 | | 3.2800 | 20500 | 0.1411 | 0.3367 | | 3.36 | 21000 | 0.1445 | 0.3497 | | 3.44 | 21500 | 0.1383 | 0.3640 | | 3.52 | 22000 | 0.1408 | 0.3497 | | 3.6 | 22500 | 0.1374 | 0.3452 | | 3.68 | 23000 | 0.1401 | 0.3519 | | 3.76 | 23500 | 0.137 | 0.3582 | | 3.84 | 24000 | 0.1393 | 0.3610 | | 3.92 | 24500 | 0.1408 | 0.3575 | | 4.0 | 25000 | 0.1388 | 0.3593 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.2.1 - Transformers: 4.44.2 - PyTorch: 2.5.0+cu121 - Accelerate: 0.34.2 - Datasets: 3.0.2 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```