--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers widget: - example_title: Nederlands source_sentence: Deze week ga ik naar de kapper sentences: - Ik ga binnenkort mijn haren laten knippen - Morgen wil ik uitslapen - Gisteren ging ik naar de bioscoop datasets: - NetherlandsForensicInstitute/AllNLI-translated-nl - NetherlandsForensicInstitute/altlex-translated-nl - NetherlandsForensicInstitute/coco-captions-translated-nl - NetherlandsForensicInstitute/flickr30k-captions-translated-nl - NetherlandsForensicInstitute/msmarco-translated-nl - NetherlandsForensicInstitute/quora-duplicates-translated-nl - NetherlandsForensicInstitute/sentence-compression-translated-nl - NetherlandsForensicInstitute/simplewiki-translated-nl - NetherlandsForensicInstitute/stackexchange-duplicate-questions-translated-nl - NetherlandsForensicInstitute/wiki-atomic-edits-translated-nl language: - nl license: apache-2.0 base_model: - DTAI-KULeuven/robbert-2022-dutch-base --- # robbert-2022-dutch-sentence-transformers This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model is based on [KU Leuven's RobBERT model](https://huggingface.co/DTAI-KULeuven/robbert-2022-dutch-base). It has been finetuned on the [Paraphrase dataset](https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/datasets/paraphrases/), which we (machine-) translated to Dutch. The Paraphrase dataset consists of multiple datasets that consist of duo's of similar texts, for example duplicate questions on a forum. We have released the translated data that we used to train this model on our Huggingface page. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers') model = AutoModel.from_pretrained('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Training The model was trained with the parameters: **DataLoader**: `MultiDatasetDataLoader.MultiDatasetDataLoader` of length 414262 with parameters: ``` {'batch_size': 1} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 50000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 500, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors