AutoregressiveVideo2WorldGeneration / ar_module_mm_projector.py
NeverMore0123's picture
reorganize files
725fd2e
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Multimodal projector to connect vision encoder / tokenizer with the LLM."""
from typing import Any, Optional
import torch
import torch.nn as nn
class DownSampleBlock(nn.Module):
"""Downsample block."""
def __init__(self):
super().__init__()
def forward(self, x):
"""
Performs the forward pass of the downsample block.
Args:
x (torch.Tensor): The input tensor from ViT's output of a sequence of embeddings.
Shape: (b, seq_len, c).
Returns:
torch.Tensor: The output tensor. Shape: (b, seq_len/4, c*4).
"""
vit_embeds = x
# Get h and w as the sqrt of seq length. This assumes that the input is square-shaped.
h = w = int(vit_embeds.shape[1] ** 0.5)
b = vit_embeds.shape[0]
vit_embeds = vit_embeds.reshape(b, h, w, -1)
vit_embeds = self.flat_square(vit_embeds)
vit_embeds = vit_embeds.reshape(b, -1, vit_embeds.shape[-1])
return vit_embeds
def flat_square(self, x: torch.Tensor) -> torch.Tensor:
"""
Performs spatial downsampling while increasing the number of channels.
Args:
x (torch.Tensor): The input tensor reshaped to a 2D grid.
Shape: (b, h, w, c)
Returns:
torch.Tensor: The output tensor after the spatial downsampling.
Shape: (b, h/2, w/2, c*4)
"""
b, h, w, c = x.size()
# If w or h is odd, pad a column or a row of zeros.
if h % 2 == 1:
x = torch.concat([x, torch.zeros((b, 1, w, c), dtype=x.dtype).to(x.device)], dim=1).contiguous()
b, h, w, c = x.size()
if w % 2 == 1:
x = torch.concat([x, torch.zeros((b, h, 1, c), dtype=x.dtype).to(x.device)], dim=2).contiguous()
b, h, w, c = x.size()
# 2x spatial downsampling, 4x channel increasing.
x = x.view(b, h, int(w / 2), int(c * 2))
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(b, int(h / 2), int(w / 2), int(c * 4))
x = x.permute(0, 2, 1, 3).contiguous()
return x
class MultimodalProjector(nn.Module):
"""Multimodal projector."""
def __init__(
self,
mm_projector_type: str,
in_dim: int,
out_dim: Optional[int] = None,
**kwargs: Any,
):
super().__init__()
if out_dim is None:
out_dim = in_dim
if mm_projector_type == "identity":
self.projector = nn.Identity()
elif mm_projector_type == "linear":
self.projector = nn.Linear(in_dim, out_dim)
elif mm_projector_type == "mlp":
self.projector = nn.Sequential(nn.Linear(in_dim, out_dim), nn.GELU(), nn.Linear(out_dim, out_dim))
elif mm_projector_type == "mlp_downsample":
self.projector = nn.Sequential(
DownSampleBlock(),
nn.LayerNorm(in_dim * 4),
nn.Linear(in_dim * 4, out_dim),
nn.GELU(),
nn.Linear(out_dim, out_dim),
)
else:
raise ValueError(f"Unknown projector type: {mm_projector_type}")
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.projector(x)