Undi95 commited on
Commit
42562cb
1 Parent(s): f80446e

Delete zero_to_fp32.py

Browse files
Files changed (1) hide show
  1. zero_to_fp32.py +0 -604
zero_to_fp32.py DELETED
@@ -1,604 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example: python zero_to_fp32.py . pytorch_model.bin
14
-
15
- import argparse
16
- import torch
17
- import glob
18
- import math
19
- import os
20
- import re
21
- from collections import OrderedDict
22
- from dataclasses import dataclass
23
-
24
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
- # DeepSpeed data structures it has to be available in the current python environment.
26
- from deepspeed.utils import logger
27
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
-
31
-
32
- @dataclass
33
- class zero_model_state:
34
- buffers: dict()
35
- param_shapes: dict()
36
- shared_params: list
37
- ds_version: int
38
- frozen_param_shapes: dict()
39
- frozen_param_fragments: dict()
40
-
41
-
42
- debug = 0
43
-
44
- # load to cpu
45
- device = torch.device('cpu')
46
-
47
-
48
- def atoi(text):
49
- return int(text) if text.isdigit() else text
50
-
51
-
52
- def natural_keys(text):
53
- '''
54
- alist.sort(key=natural_keys) sorts in human order
55
- http://nedbatchelder.com/blog/200712/human_sorting.html
56
- (See Toothy's implementation in the comments)
57
- '''
58
- return [atoi(c) for c in re.split(r'(\d+)', text)]
59
-
60
-
61
- def get_model_state_file(checkpoint_dir, zero_stage):
62
- if not os.path.isdir(checkpoint_dir):
63
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
-
65
- # there should be only one file
66
- if zero_stage <= 2:
67
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
- elif zero_stage == 3:
69
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
-
71
- if not os.path.exists(file):
72
- raise FileNotFoundError(f"can't find model states file at '{file}'")
73
-
74
- return file
75
-
76
-
77
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
- # XXX: need to test that this simple glob rule works for multi-node setup too
79
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
-
81
- if len(ckpt_files) == 0:
82
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
-
84
- return ckpt_files
85
-
86
-
87
- def get_optim_files(checkpoint_dir):
88
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
-
90
-
91
- def get_model_state_files(checkpoint_dir):
92
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
-
94
-
95
- def parse_model_states(files):
96
- zero_model_states = []
97
- for file in files:
98
- state_dict = torch.load(file, map_location=device)
99
-
100
- if BUFFER_NAMES not in state_dict:
101
- raise ValueError(f"{file} is not a model state checkpoint")
102
- buffer_names = state_dict[BUFFER_NAMES]
103
- if debug:
104
- print("Found buffers:", buffer_names)
105
-
106
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
- param_shapes = state_dict[PARAM_SHAPES]
109
-
110
- # collect parameters that are included in param_shapes
111
- param_names = []
112
- for s in param_shapes:
113
- for name in s.keys():
114
- param_names.append(name)
115
-
116
- # update with frozen parameters
117
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
- if frozen_param_shapes is not None:
119
- if debug:
120
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
- param_names += list(frozen_param_shapes.keys())
122
-
123
- # handle shared params
124
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
-
126
- ds_version = state_dict.get(DS_VERSION, None)
127
-
128
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
-
130
- z_model_state = zero_model_state(buffers=buffers,
131
- param_shapes=param_shapes,
132
- shared_params=shared_params,
133
- ds_version=ds_version,
134
- frozen_param_shapes=frozen_param_shapes,
135
- frozen_param_fragments=frozen_param_fragments)
136
- zero_model_states.append(z_model_state)
137
-
138
- return zero_model_states
139
-
140
-
141
- def parse_optim_states(files, ds_checkpoint_dir):
142
-
143
- total_files = len(files)
144
- state_dicts = []
145
- for f in files:
146
- state_dict = torch.load(f, map_location=device)
147
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
- # and also handle the case where it was already removed by another helper script
149
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
- state_dicts.append(state_dict)
151
-
152
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
- raise ValueError(f"{files[0]} is not a zero checkpoint")
154
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
-
157
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
- # parameters can be different from data parallelism for non-expert parameters. So we can just
159
- # use the max of the partition_count to get the dp world_size.
160
-
161
- if type(world_size) is list:
162
- world_size = max(world_size)
163
-
164
- if world_size != total_files:
165
- raise ValueError(
166
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
- )
169
-
170
- # the groups are named differently in each stage
171
- if zero_stage <= 2:
172
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
- elif zero_stage == 3:
174
- fp32_groups_key = FP32_FLAT_GROUPS
175
- else:
176
- raise ValueError(f"unknown zero stage {zero_stage}")
177
-
178
- if zero_stage <= 2:
179
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
- elif zero_stage == 3:
181
- # if there is more than one param group, there will be multiple flattened tensors - one
182
- # flattened tensor per group - for simplicity merge them into a single tensor
183
- #
184
- # XXX: could make the script more memory efficient for when there are multiple groups - it
185
- # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
-
187
- fp32_flat_groups = [
188
- torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
- ]
190
-
191
- return zero_stage, world_size, fp32_flat_groups
192
-
193
-
194
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
- """
196
- Returns fp32 state_dict reconstructed from ds checkpoint
197
-
198
- Args:
199
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
-
201
- """
202
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
-
204
- optim_files = get_optim_files(ds_checkpoint_dir)
205
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
-
208
- model_files = get_model_state_files(ds_checkpoint_dir)
209
-
210
- zero_model_states = parse_model_states(model_files)
211
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
-
213
- if zero_stage <= 2:
214
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
- exclude_frozen_parameters)
216
- elif zero_stage == 3:
217
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
- exclude_frozen_parameters)
219
-
220
-
221
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
- return
224
-
225
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
-
228
- if debug:
229
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
-
232
- wanted_params = len(frozen_param_shapes)
233
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
- print(f'Frozen params: Have {avail_numel} numels to process.')
236
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
-
238
- total_params = 0
239
- total_numel = 0
240
- for name, shape in frozen_param_shapes.items():
241
- total_params += 1
242
- unpartitioned_numel = shape.numel()
243
- total_numel += unpartitioned_numel
244
-
245
- state_dict[name] = frozen_param_fragments[name]
246
-
247
- if debug:
248
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
-
250
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
-
252
-
253
- def _has_callable(obj, fn):
254
- attr = getattr(obj, fn, None)
255
- return callable(attr)
256
-
257
-
258
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
- param_shapes = zero_model_states[0].param_shapes
260
-
261
- # Reconstruction protocol:
262
- #
263
- # XXX: document this
264
-
265
- if debug:
266
- for i in range(world_size):
267
- for j in range(len(fp32_flat_groups[0])):
268
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
-
270
- # XXX: memory usage doubles here (zero2)
271
- num_param_groups = len(fp32_flat_groups[0])
272
- merged_single_partition_of_fp32_groups = []
273
- for i in range(num_param_groups):
274
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
- avail_numel = sum(
278
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
-
280
- if debug:
281
- wanted_params = sum([len(shapes) for shapes in param_shapes])
282
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
- # not asserting if there is a mismatch due to possible padding
284
- print(f"Have {avail_numel} numels to process.")
285
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
-
287
- # params
288
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
- # out-of-core computing solution
290
- total_numel = 0
291
- total_params = 0
292
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
- offset = 0
294
- avail_numel = full_single_fp32_vector.numel()
295
- for name, shape in shapes.items():
296
-
297
- unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
- total_numel += unpartitioned_numel
299
- total_params += 1
300
-
301
- if debug:
302
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
- offset += unpartitioned_numel
305
-
306
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
- # live optimizer object, so we are checking that the numbers are within the right range
310
- align_to = 2 * world_size
311
-
312
- def zero2_align(x):
313
- return align_to * math.ceil(x / align_to)
314
-
315
- if debug:
316
- print(f"original offset={offset}, avail_numel={avail_numel}")
317
-
318
- offset = zero2_align(offset)
319
- avail_numel = zero2_align(avail_numel)
320
-
321
- if debug:
322
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
-
324
- # Sanity check
325
- if offset != avail_numel:
326
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
-
328
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
-
330
-
331
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
- exclude_frozen_parameters):
333
- state_dict = OrderedDict()
334
-
335
- # buffers
336
- buffers = zero_model_states[0].buffers
337
- state_dict.update(buffers)
338
- if debug:
339
- print(f"added {len(buffers)} buffers")
340
-
341
- if not exclude_frozen_parameters:
342
- _zero2_merge_frozen_params(state_dict, zero_model_states)
343
-
344
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
-
346
- # recover shared parameters
347
- for pair in zero_model_states[0].shared_params:
348
- if pair[1] in state_dict:
349
- state_dict[pair[0]] = state_dict[pair[1]]
350
-
351
- return state_dict
352
-
353
-
354
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
- remainder = unpartitioned_numel % world_size
356
- padding_numel = (world_size - remainder) if remainder else 0
357
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
- return partitioned_numel, padding_numel
359
-
360
-
361
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
- return
364
-
365
- if debug:
366
- for i in range(world_size):
367
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
-
370
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
- wanted_params = len(frozen_param_shapes)
372
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
- print(f'Frozen params: Have {avail_numel} numels to process.')
375
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
-
377
- total_params = 0
378
- total_numel = 0
379
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
- total_params += 1
381
- unpartitioned_numel = shape.numel()
382
- total_numel += unpartitioned_numel
383
-
384
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
-
387
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
-
389
- if debug:
390
- print(
391
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
- )
393
-
394
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
-
396
-
397
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
- param_shapes = zero_model_states[0].param_shapes
399
- avail_numel = fp32_flat_groups[0].numel() * world_size
400
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
- # param, re-consolidating each param, while dealing with padding if any
402
-
403
- # merge list of dicts, preserving order
404
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
-
406
- if debug:
407
- for i in range(world_size):
408
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
-
410
- wanted_params = len(param_shapes)
411
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
- # not asserting if there is a mismatch due to possible padding
413
- avail_numel = fp32_flat_groups[0].numel() * world_size
414
- print(f"Trainable params: Have {avail_numel} numels to process.")
415
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
-
417
- # params
418
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
- # out-of-core computing solution
420
- offset = 0
421
- total_numel = 0
422
- total_params = 0
423
- for name, shape in param_shapes.items():
424
-
425
- unpartitioned_numel = shape.numel()
426
- total_numel += unpartitioned_numel
427
- total_params += 1
428
-
429
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
-
431
- if debug:
432
- print(
433
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
- )
435
-
436
- # XXX: memory usage doubles here
437
- state_dict[name] = torch.cat(
438
- tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
- 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
- offset += partitioned_numel
441
-
442
- offset *= world_size
443
-
444
- # Sanity check
445
- if offset != avail_numel:
446
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
-
448
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
-
450
-
451
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
- exclude_frozen_parameters):
453
- state_dict = OrderedDict()
454
-
455
- # buffers
456
- buffers = zero_model_states[0].buffers
457
- state_dict.update(buffers)
458
- if debug:
459
- print(f"added {len(buffers)} buffers")
460
-
461
- if not exclude_frozen_parameters:
462
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
-
464
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
-
466
- # recover shared parameters
467
- for pair in zero_model_states[0].shared_params:
468
- if pair[1] in state_dict:
469
- state_dict[pair[0]] = state_dict[pair[1]]
470
-
471
- return state_dict
472
-
473
-
474
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
- """
476
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
- via a model hub.
479
-
480
- Args:
481
- - ``checkpoint_dir``: path to the desired checkpoint folder
482
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
- - ``exclude_frozen_parameters``: exclude frozen parameters
484
-
485
- Returns:
486
- - pytorch ``state_dict``
487
-
488
- Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
- you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
- the checkpoint.
491
-
492
- A typical usage might be ::
493
-
494
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
- # do the training and checkpoint saving
496
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
- model = model.cpu() # move to cpu
498
- model.load_state_dict(state_dict)
499
- # submit to model hub or save the model to share with others
500
-
501
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
- application. i.e. you will need to re-initialize the deepspeed engine, since
503
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
-
505
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
-
507
- """
508
- if tag is None:
509
- latest_path = os.path.join(checkpoint_dir, 'latest')
510
- if os.path.isfile(latest_path):
511
- with open(latest_path, 'r') as fd:
512
- tag = fd.read().strip()
513
- else:
514
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
-
516
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
-
518
- if not os.path.isdir(ds_checkpoint_dir):
519
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
-
521
- return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
-
523
-
524
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
- """
526
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
-
529
- Args:
530
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
- - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
- - ``exclude_frozen_parameters``: exclude frozen parameters
534
- """
535
-
536
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
- print(f"Saving fp32 state dict to {output_file}")
538
- torch.save(state_dict, output_file)
539
-
540
-
541
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
- """
543
- 1. Put the provided model to cpu
544
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
- 3. Load it into the provided model
546
-
547
- Args:
548
- - ``model``: the model object to update
549
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
-
552
- Returns:
553
- - ``model`: modified model
554
-
555
- Make sure you have plenty of CPU memory available before you call this function. If you don't
556
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
- conveniently placed for you in the checkpoint folder.
558
-
559
- A typical usage might be ::
560
-
561
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
- # submit to model hub or save the model to share with others
564
-
565
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
-
569
- """
570
- logger.info(f"Extracting fp32 weights")
571
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
-
573
- logger.info(f"Overwriting model with fp32 weights")
574
- model = model.cpu()
575
- model.load_state_dict(state_dict, strict=False)
576
-
577
- return model
578
-
579
-
580
- if __name__ == "__main__":
581
-
582
- parser = argparse.ArgumentParser()
583
- parser.add_argument("checkpoint_dir",
584
- type=str,
585
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
- parser.add_argument(
587
- "output_file",
588
- type=str,
589
- help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
- parser.add_argument("-t",
591
- "--tag",
592
- type=str,
593
- default=None,
594
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
- parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
- args = parser.parse_args()
598
-
599
- debug = args.debug
600
-
601
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
- args.output_file,
603
- tag=args.tag,
604
- exclude_frozen_parameters=args.exclude_frozen_parameters)