Undi95 commited on
Commit
81b0126
1 Parent(s): 9ab7d6e

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-Nemo-Base-2407",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 5120,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 1024000,
15
+ "model_type": "mistral",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 40,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.44.0.dev0",
25
+ "use_cache": false,
26
+ "vocab_size": 131073
27
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "transformers_version": "4.44.0.dev0"
7
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step180
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27d7836bb639b4738b36fa36c79a8717dd09b8baf129897e8431220e0c043c43
3
+ size 4865532736
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1c95fd82c96b0450c8ccd8f0ba522d9be0d2d9df2dce663c19a5ee535240503
3
+ size 4907529424
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69e87dddbe0dc4529f42ea62c85dd5e0e84ff664c4e1d1bbd60b5f858d027c0b
3
+ size 4907529456
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e86928011fb8b6bc7badbacade9958a92ee0bedf3df62ec193114b0a55e1d5cd
3
+ size 4907529456
model-00005-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6a8a6e132c5b2e2940eb32a42d42ff81dabf69413b127fafe949db6e38f5def
3
+ size 4907506512
model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 24495585280
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00005-of-00005.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00005.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00005.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00005.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00005.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00005.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00005.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00005.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00005.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
368
+ "model.norm.weight": "model-00005-of-00005.safetensors"
369
+ }
370
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08282b46825aa78d10fe10e3fea89555c5b5a691b261a3ddfd58fcb58370edff
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbab71d98a3a9a92df82a6bba463947327c3a1bcf35cd9f4f46114641fc42dd9
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caac82d57d878d30219a4f9ec289a97ff90c53afc160b968f251b3fd3454b8d8
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19762d2d370222b01817da11bbaa6665d542293373186d66f754e7246bb861ed
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00c7508b346a7d3c5c23392845f1d013331114ade778794b76e919cb3ed5d33e
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b89de7d14dd20a191f56b74c816ef8b7fe5c171e31efbeadbf321c4539ed68c3
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c71152053553e6e22d670fbc4fd7550bf8a046b54cad7b71869787986a6a42c
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b67db12a26a26ffe03d9afc84a43857eb2e5b2fec2dd189653b415f74208190
3
+ size 15984
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac11880ab7844d15750f898a7e872d86aabf1af83199f34aca9402fe6da59799
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,1293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.4773519163763065,
5
+ "eval_steps": 500,
6
+ "global_step": 180,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.013937282229965157,
13
+ "grad_norm": 93.75749969482422,
14
+ "learning_rate": 2.2e-06,
15
+ "loss": 1.2675,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.027874564459930314,
20
+ "grad_norm": 66.60814666748047,
21
+ "learning_rate": 4.4e-06,
22
+ "loss": 1.3582,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.041811846689895474,
27
+ "grad_norm": 77.9828109741211,
28
+ "learning_rate": 6.5999999999999995e-06,
29
+ "loss": 1.2567,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.05574912891986063,
34
+ "grad_norm": 17.5104923248291,
35
+ "learning_rate": 8.8e-06,
36
+ "loss": 1.1877,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.06968641114982578,
41
+ "grad_norm": 10.045647621154785,
42
+ "learning_rate": 1.1e-05,
43
+ "loss": 1.1663,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.08362369337979095,
48
+ "grad_norm": 12.031865119934082,
49
+ "learning_rate": 1.0999372667896238e-05,
50
+ "loss": 1.1769,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.0975609756097561,
55
+ "grad_norm": 6.24857234954834,
56
+ "learning_rate": 1.0997490814692433e-05,
57
+ "loss": 1.1703,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.11149825783972125,
62
+ "grad_norm": 4.496493816375732,
63
+ "learning_rate": 1.0994354869678378e-05,
64
+ "loss": 1.1608,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.1254355400696864,
69
+ "grad_norm": 4.9181036949157715,
70
+ "learning_rate": 1.0989965548228246e-05,
71
+ "loss": 1.1165,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.13937282229965156,
76
+ "grad_norm": 3.872187614440918,
77
+ "learning_rate": 1.0984323851637407e-05,
78
+ "loss": 1.1308,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.15331010452961671,
83
+ "grad_norm": 4.341373920440674,
84
+ "learning_rate": 1.0977431066894e-05,
85
+ "loss": 1.1245,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1672473867595819,
90
+ "grad_norm": 3.867882013320923,
91
+ "learning_rate": 1.0969288766385357e-05,
92
+ "loss": 1.1486,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.18118466898954705,
97
+ "grad_norm": 3.2795205116271973,
98
+ "learning_rate": 1.0959898807539295e-05,
99
+ "loss": 1.123,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.1951219512195122,
104
+ "grad_norm": 3.429868698120117,
105
+ "learning_rate": 1.0949263332400415e-05,
106
+ "loss": 1.1169,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.20905923344947736,
111
+ "grad_norm": 3.0912277698516846,
112
+ "learning_rate": 1.0937384767141438e-05,
113
+ "loss": 1.0832,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.2229965156794425,
118
+ "grad_norm": 4.55407190322876,
119
+ "learning_rate": 1.0924265821509758e-05,
120
+ "loss": 1.1018,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.23693379790940766,
125
+ "grad_norm": 3.4495749473571777,
126
+ "learning_rate": 1.090990948820929e-05,
127
+ "loss": 1.1186,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.2508710801393728,
132
+ "grad_norm": 6.985757827758789,
133
+ "learning_rate": 1.0894319042217767e-05,
134
+ "loss": 1.1135,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.26480836236933797,
139
+ "grad_norm": 3.7354323863983154,
140
+ "learning_rate": 1.0877498040039657e-05,
141
+ "loss": 1.1064,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.2787456445993031,
146
+ "grad_norm": 4.375406265258789,
147
+ "learning_rate": 1.0859450318894847e-05,
148
+ "loss": 1.0767,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.2926829268292683,
153
+ "grad_norm": 4.374971389770508,
154
+ "learning_rate": 1.0840179995843286e-05,
155
+ "loss": 1.1072,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.30662020905923343,
160
+ "grad_norm": 3.129504442214966,
161
+ "learning_rate": 1.0819691466845815e-05,
162
+ "loss": 1.0414,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.3205574912891986,
167
+ "grad_norm": 4.991695404052734,
168
+ "learning_rate": 1.079798940576134e-05,
169
+ "loss": 1.0773,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.3344947735191638,
174
+ "grad_norm": 3.570375919342041,
175
+ "learning_rate": 1.0775078763280638e-05,
176
+ "loss": 1.0709,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.34843205574912894,
181
+ "grad_norm": 7.718966007232666,
182
+ "learning_rate": 1.0750964765797001e-05,
183
+ "loss": 1.1019,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.3623693379790941,
188
+ "grad_norm": 3.459160327911377,
189
+ "learning_rate": 1.072565291421398e-05,
190
+ "loss": 1.0505,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.37630662020905925,
195
+ "grad_norm": 5.686498641967773,
196
+ "learning_rate": 1.069914898269052e-05,
197
+ "loss": 1.0897,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.3902439024390244,
202
+ "grad_norm": 3.622288465499878,
203
+ "learning_rate": 1.067145901732376e-05,
204
+ "loss": 1.0817,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.40418118466898956,
209
+ "grad_norm": 6.713829040527344,
210
+ "learning_rate": 1.0642589334769783e-05,
211
+ "loss": 1.0597,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.4181184668989547,
216
+ "grad_norm": 3.2670044898986816,
217
+ "learning_rate": 1.061254652080265e-05,
218
+ "loss": 1.0631,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.43205574912891986,
223
+ "grad_norm": 3.0448334217071533,
224
+ "learning_rate": 1.0581337428812077e-05,
225
+ "loss": 1.0697,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.445993031358885,
230
+ "grad_norm": 4.583492755889893,
231
+ "learning_rate": 1.0548969178239997e-05,
232
+ "loss": 1.0564,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.45993031358885017,
237
+ "grad_norm": 3.7002651691436768,
238
+ "learning_rate": 1.0515449152956496e-05,
239
+ "loss": 1.0852,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.4738675958188153,
244
+ "grad_norm": 3.1550400257110596,
245
+ "learning_rate": 1.0480784999575381e-05,
246
+ "loss": 1.0576,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.4878048780487805,
251
+ "grad_norm": 3.1954734325408936,
252
+ "learning_rate": 1.0444984625709842e-05,
253
+ "loss": 1.0965,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.5017421602787456,
258
+ "grad_norm": 2.8396148681640625,
259
+ "learning_rate": 1.0408056198168555e-05,
260
+ "loss": 1.0401,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.5156794425087108,
265
+ "grad_norm": 10.67453384399414,
266
+ "learning_rate": 1.0370008141092654e-05,
267
+ "loss": 1.0909,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.5296167247386759,
272
+ "grad_norm": 3.554422378540039,
273
+ "learning_rate": 1.0330849134034033e-05,
274
+ "loss": 1.0534,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.5435540069686411,
279
+ "grad_norm": 3.5049169063568115,
280
+ "learning_rate": 1.0290588109975334e-05,
281
+ "loss": 1.0366,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.5574912891986062,
286
+ "grad_norm": 3.9955601692199707,
287
+ "learning_rate": 1.024923425329217e-05,
288
+ "loss": 1.0264,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.5714285714285714,
293
+ "grad_norm": 3.2370924949645996,
294
+ "learning_rate": 1.0206796997657961e-05,
295
+ "loss": 1.0282,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.5853658536585366,
300
+ "grad_norm": 3.0653462409973145,
301
+ "learning_rate": 1.0163286023891926e-05,
302
+ "loss": 1.066,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.5993031358885017,
307
+ "grad_norm": 2.9653961658477783,
308
+ "learning_rate": 1.011871125775069e-05,
309
+ "loss": 1.068,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.6132404181184669,
314
+ "grad_norm": 2.899329423904419,
315
+ "learning_rate": 1.0073082867664e-05,
316
+ "loss": 1.0075,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.627177700348432,
321
+ "grad_norm": 3.231595277786255,
322
+ "learning_rate": 1.002641126241511e-05,
323
+ "loss": 1.0579,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.6411149825783972,
328
+ "grad_norm": 3.7711715698242188,
329
+ "learning_rate": 9.978707088766316e-06,
330
+ "loss": 1.0511,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.6550522648083623,
335
+ "grad_norm": 3.1697182655334473,
336
+ "learning_rate": 9.929981229030202e-06,
337
+ "loss": 1.0785,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.6689895470383276,
342
+ "grad_norm": 2.8038201332092285,
343
+ "learning_rate": 9.88024479858717e-06,
344
+ "loss": 1.0389,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.6829268292682927,
349
+ "grad_norm": 3.2184159755706787,
350
+ "learning_rate": 9.829509143349775e-06,
351
+ "loss": 1.0625,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.6968641114982579,
356
+ "grad_norm": 2.9576430320739746,
357
+ "learning_rate": 9.77778583717451e-06,
358
+ "loss": 1.0217,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.710801393728223,
363
+ "grad_norm": 2.918567657470703,
364
+ "learning_rate": 9.725086679221542e-06,
365
+ "loss": 1.0106,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.7247386759581882,
370
+ "grad_norm": 2.8690834045410156,
371
+ "learning_rate": 9.671423691263104e-06,
372
+ "loss": 1.0427,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.7386759581881533,
377
+ "grad_norm": 2.8049697875976562,
378
+ "learning_rate": 9.616809114941055e-06,
379
+ "loss": 1.0553,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.7526132404181185,
384
+ "grad_norm": 3.5655879974365234,
385
+ "learning_rate": 9.561255408974332e-06,
386
+ "loss": 1.0308,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.7665505226480837,
391
+ "grad_norm": 3.0086355209350586,
392
+ "learning_rate": 9.504775246316836e-06,
393
+ "loss": 1.0625,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.7804878048780488,
398
+ "grad_norm": 3.2106897830963135,
399
+ "learning_rate": 9.447381511266482e-06,
400
+ "loss": 1.0582,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.794425087108014,
405
+ "grad_norm": 3.013434410095215,
406
+ "learning_rate": 9.38908729652601e-06,
407
+ "loss": 1.0501,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.8083623693379791,
412
+ "grad_norm": 3.194031000137329,
413
+ "learning_rate": 9.32990590021629e-06,
414
+ "loss": 1.0385,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.8222996515679443,
419
+ "grad_norm": 2.9916939735412598,
420
+ "learning_rate": 9.269850822842717e-06,
421
+ "loss": 0.9978,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.8362369337979094,
426
+ "grad_norm": 2.90720796585083,
427
+ "learning_rate": 9.208935764215487e-06,
428
+ "loss": 1.038,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.8501742160278746,
433
+ "grad_norm": 2.983062505722046,
434
+ "learning_rate": 9.147174620324374e-06,
435
+ "loss": 1.0137,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.8641114982578397,
440
+ "grad_norm": 3.021130084991455,
441
+ "learning_rate": 9.084581480168767e-06,
442
+ "loss": 1.0388,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.8780487804878049,
447
+ "grad_norm": 3.831815242767334,
448
+ "learning_rate": 9.021170622543684e-06,
449
+ "loss": 1.0482,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.89198606271777,
454
+ "grad_norm": 3.5826456546783447,
455
+ "learning_rate": 8.956956512782476e-06,
456
+ "loss": 1.0494,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.9059233449477352,
461
+ "grad_norm": 3.445178747177124,
462
+ "learning_rate": 8.891953799456987e-06,
463
+ "loss": 0.9976,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.9198606271777003,
468
+ "grad_norm": 2.8443377017974854,
469
+ "learning_rate": 8.826177311035906e-06,
470
+ "loss": 1.0646,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.9337979094076655,
475
+ "grad_norm": 2.8210973739624023,
476
+ "learning_rate": 8.759642052502092e-06,
477
+ "loss": 1.0602,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.9477351916376306,
482
+ "grad_norm": 2.9282021522521973,
483
+ "learning_rate": 8.692363201929623e-06,
484
+ "loss": 1.041,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.9616724738675958,
489
+ "grad_norm": 2.916203260421753,
490
+ "learning_rate": 8.624356107021355e-06,
491
+ "loss": 1.035,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.975609756097561,
496
+ "grad_norm": 2.7474899291992188,
497
+ "learning_rate": 8.555636281607811e-06,
498
+ "loss": 1.0443,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.9895470383275261,
503
+ "grad_norm": 3.2409560680389404,
504
+ "learning_rate": 8.486219402108133e-06,
505
+ "loss": 1.0502,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 1.0034843205574913,
510
+ "grad_norm": 3.2006499767303467,
511
+ "learning_rate": 8.416121303953973e-06,
512
+ "loss": 1.0337,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 1.0017421602787457,
517
+ "grad_norm": 3.021101713180542,
518
+ "learning_rate": 8.345357977977113e-06,
519
+ "loss": 1.0164,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 1.0156794425087108,
524
+ "grad_norm": 3.0675883293151855,
525
+ "learning_rate": 8.273945566761604e-06,
526
+ "loss": 0.9739,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 1.029616724738676,
531
+ "grad_norm": 2.925316095352173,
532
+ "learning_rate": 8.201900360961325e-06,
533
+ "loss": 0.9607,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 1.043554006968641,
538
+ "grad_norm": 3.2823657989501953,
539
+ "learning_rate": 8.12923879558374e-06,
540
+ "loss": 0.9313,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 1.0574912891986064,
545
+ "grad_norm": 2.809762477874756,
546
+ "learning_rate": 8.055977446240727e-06,
547
+ "loss": 0.9682,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 1.0714285714285714,
552
+ "grad_norm": 3.0586483478546143,
553
+ "learning_rate": 7.982133025367346e-06,
554
+ "loss": 0.9674,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 1.0853658536585367,
559
+ "grad_norm": 2.9541120529174805,
560
+ "learning_rate": 7.907722378409371e-06,
561
+ "loss": 0.9691,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 1.0993031358885017,
566
+ "grad_norm": 2.965197801589966,
567
+ "learning_rate": 7.83276247998052e-06,
568
+ "loss": 0.9537,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 1.113240418118467,
573
+ "grad_norm": 3.096423625946045,
574
+ "learning_rate": 7.757270429990162e-06,
575
+ "loss": 0.9631,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 1.127177700348432,
580
+ "grad_norm": 3.0303800106048584,
581
+ "learning_rate": 7.681263449742493e-06,
582
+ "loss": 0.9774,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 1.1411149825783973,
587
+ "grad_norm": 3.2755138874053955,
588
+ "learning_rate": 7.604758878007994e-06,
589
+ "loss": 0.9589,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 1.1550522648083623,
594
+ "grad_norm": 3.0583481788635254,
595
+ "learning_rate": 7.527774167068094e-06,
596
+ "loss": 0.9313,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 1.1689895470383276,
601
+ "grad_norm": 2.8140718936920166,
602
+ "learning_rate": 7.4503268787339455e-06,
603
+ "loss": 0.9137,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 1.1829268292682926,
608
+ "grad_norm": 3.0150392055511475,
609
+ "learning_rate": 7.372434680340213e-06,
610
+ "loss": 0.9324,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 1.1968641114982579,
615
+ "grad_norm": 3.1816203594207764,
616
+ "learning_rate": 7.294115340714782e-06,
617
+ "loss": 0.9835,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 1.210801393728223,
622
+ "grad_norm": 3.011570930480957,
623
+ "learning_rate": 7.215386726125319e-06,
624
+ "loss": 0.9395,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 1.2247386759581882,
629
+ "grad_norm": 4.090625286102295,
630
+ "learning_rate": 7.1362667962036166e-06,
631
+ "loss": 0.9682,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 1.2386759581881532,
636
+ "grad_norm": 3.290282964706421,
637
+ "learning_rate": 7.056773599848612e-06,
638
+ "loss": 0.9487,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 1.2526132404181185,
643
+ "grad_norm": 3.567591667175293,
644
+ "learning_rate": 6.976925271109072e-06,
645
+ "loss": 0.9459,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 1.2665505226480835,
650
+ "grad_norm": 2.817159414291382,
651
+ "learning_rate": 6.8967400250468335e-06,
652
+ "loss": 0.968,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 1.2804878048780488,
657
+ "grad_norm": 3.8883535861968994,
658
+ "learning_rate": 6.816236153581568e-06,
659
+ "loss": 0.938,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 1.294425087108014,
664
+ "grad_norm": 2.920037269592285,
665
+ "learning_rate": 6.735432021318023e-06,
666
+ "loss": 0.9401,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 1.3083623693379791,
671
+ "grad_norm": 2.851327896118164,
672
+ "learning_rate": 6.654346061356661e-06,
673
+ "loss": 0.9636,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 1.3222996515679442,
678
+ "grad_norm": 3.1404778957366943,
679
+ "learning_rate": 6.572996771088706e-06,
680
+ "loss": 0.9665,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 1.3362369337979094,
685
+ "grad_norm": 4.205505847930908,
686
+ "learning_rate": 6.491402707976482e-06,
687
+ "loss": 0.945,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 1.3501742160278747,
692
+ "grad_norm": 2.9891207218170166,
693
+ "learning_rate": 6.409582485320087e-06,
694
+ "loss": 0.9554,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 1.3641114982578397,
699
+ "grad_norm": 2.9016053676605225,
700
+ "learning_rate": 6.327554768011307e-06,
701
+ "loss": 0.9613,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 1.3780487804878048,
706
+ "grad_norm": 2.954751968383789,
707
+ "learning_rate": 6.245338268275765e-06,
708
+ "loss": 0.9358,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 1.39198606271777,
713
+ "grad_norm": 3.2333548069000244,
714
+ "learning_rate": 6.162951741404276e-06,
715
+ "loss": 0.9573,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 1.4059233449477353,
720
+ "grad_norm": 3.4226996898651123,
721
+ "learning_rate": 6.080413981474379e-06,
722
+ "loss": 0.9294,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 1.4198606271777003,
727
+ "grad_norm": 3.169379711151123,
728
+ "learning_rate": 5.9977438170630085e-06,
729
+ "loss": 0.9195,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 1.4337979094076654,
734
+ "grad_norm": 3.147132396697998,
735
+ "learning_rate": 5.914960106951313e-06,
736
+ "loss": 0.9524,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 1.4477351916376306,
741
+ "grad_norm": 2.7678744792938232,
742
+ "learning_rate": 5.832081735822573e-06,
743
+ "loss": 0.9234,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 1.461672473867596,
748
+ "grad_norm": 2.8116793632507324,
749
+ "learning_rate": 5.749127609954215e-06,
750
+ "loss": 0.9619,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 1.475609756097561,
755
+ "grad_norm": 3.6426944732666016,
756
+ "learning_rate": 5.666116652904889e-06,
757
+ "loss": 0.9435,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 1.489547038327526,
762
+ "grad_norm": 4.532324314117432,
763
+ "learning_rate": 5.5830678011976225e-06,
764
+ "loss": 0.9538,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 1.5034843205574913,
769
+ "grad_norm": 3.7293591499328613,
770
+ "learning_rate": 5.5e-06,
771
+ "loss": 0.9595,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 1.5174216027874565,
776
+ "grad_norm": 2.8792057037353516,
777
+ "learning_rate": 5.416932198802378e-06,
778
+ "loss": 0.9498,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 1.5313588850174216,
783
+ "grad_norm": 2.9074580669403076,
784
+ "learning_rate": 5.333883347095112e-06,
785
+ "loss": 0.9572,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 1.5452961672473866,
790
+ "grad_norm": 4.807355880737305,
791
+ "learning_rate": 5.250872390045787e-06,
792
+ "loss": 0.9527,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 1.5592334494773519,
797
+ "grad_norm": 4.229637622833252,
798
+ "learning_rate": 5.167918264177426e-06,
799
+ "loss": 0.9275,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 1.5731707317073171,
804
+ "grad_norm": 3.07944393157959,
805
+ "learning_rate": 5.085039893048687e-06,
806
+ "loss": 0.9565,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 1.5871080139372822,
811
+ "grad_norm": 2.8650782108306885,
812
+ "learning_rate": 5.002256182936992e-06,
813
+ "loss": 0.9493,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 1.6010452961672472,
818
+ "grad_norm": 2.928194284439087,
819
+ "learning_rate": 4.919586018525621e-06,
820
+ "loss": 0.9513,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 1.6149825783972127,
825
+ "grad_norm": 3.433330535888672,
826
+ "learning_rate": 4.837048258595723e-06,
827
+ "loss": 0.978,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.6289198606271778,
832
+ "grad_norm": 2.8581085205078125,
833
+ "learning_rate": 4.754661731724237e-06,
834
+ "loss": 0.9366,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.6428571428571428,
839
+ "grad_norm": 2.897559404373169,
840
+ "learning_rate": 4.672445231988693e-06,
841
+ "loss": 0.9641,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.656794425087108,
846
+ "grad_norm": 2.8979365825653076,
847
+ "learning_rate": 4.590417514679912e-06,
848
+ "loss": 0.9316,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.6707317073170733,
853
+ "grad_norm": 3.090183734893799,
854
+ "learning_rate": 4.508597292023518e-06,
855
+ "loss": 0.9545,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.6846689895470384,
860
+ "grad_norm": 2.9215645790100098,
861
+ "learning_rate": 4.427003228911295e-06,
862
+ "loss": 0.9169,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.6986062717770034,
867
+ "grad_norm": 4.066997528076172,
868
+ "learning_rate": 4.345653938643339e-06,
869
+ "loss": 0.9357,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.7125435540069687,
874
+ "grad_norm": 3.2360036373138428,
875
+ "learning_rate": 4.2645679786819796e-06,
876
+ "loss": 0.9205,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.726480836236934,
881
+ "grad_norm": 2.890538215637207,
882
+ "learning_rate": 4.1837638464184334e-06,
883
+ "loss": 0.9355,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.740418118466899,
888
+ "grad_norm": 3.4630892276763916,
889
+ "learning_rate": 4.103259974953166e-06,
890
+ "loss": 0.9263,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.754355400696864,
895
+ "grad_norm": 3.326503276824951,
896
+ "learning_rate": 4.023074728890927e-06,
897
+ "loss": 0.9154,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.7682926829268293,
902
+ "grad_norm": 3.6348044872283936,
903
+ "learning_rate": 3.943226400151388e-06,
904
+ "loss": 0.944,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.7822299651567945,
909
+ "grad_norm": 3.0831995010375977,
910
+ "learning_rate": 3.863733203796385e-06,
911
+ "loss": 0.9457,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.7961672473867596,
916
+ "grad_norm": 3.1765310764312744,
917
+ "learning_rate": 3.784613273874681e-06,
918
+ "loss": 0.9329,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.8101045296167246,
923
+ "grad_norm": 2.767540693283081,
924
+ "learning_rate": 3.70588465928522e-06,
925
+ "loss": 0.9285,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.82404181184669,
930
+ "grad_norm": 2.718041181564331,
931
+ "learning_rate": 3.6275653196597856e-06,
932
+ "loss": 0.9767,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.8379790940766552,
937
+ "grad_norm": 4.337693691253662,
938
+ "learning_rate": 3.5496731212660538e-06,
939
+ "loss": 0.9351,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.8519163763066202,
944
+ "grad_norm": 3.106288194656372,
945
+ "learning_rate": 3.472225832931907e-06,
946
+ "loss": 0.9554,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.8658536585365852,
951
+ "grad_norm": 3.2049343585968018,
952
+ "learning_rate": 3.3952411219920066e-06,
953
+ "loss": 0.9601,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.8797909407665505,
958
+ "grad_norm": 4.705850601196289,
959
+ "learning_rate": 3.318736550257507e-06,
960
+ "loss": 0.9595,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.8937282229965158,
965
+ "grad_norm": 3.335909128189087,
966
+ "learning_rate": 3.2427295700098385e-06,
967
+ "loss": 0.9889,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.9076655052264808,
972
+ "grad_norm": 2.938302993774414,
973
+ "learning_rate": 3.1672375200194797e-06,
974
+ "loss": 0.9306,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.9216027874564459,
979
+ "grad_norm": 3.15813946723938,
980
+ "learning_rate": 3.092277621590627e-06,
981
+ "loss": 0.9332,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.9355400696864111,
986
+ "grad_norm": 2.869309902191162,
987
+ "learning_rate": 3.0178669746326567e-06,
988
+ "loss": 0.9496,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.9494773519163764,
993
+ "grad_norm": 2.8482539653778076,
994
+ "learning_rate": 2.9440225537592728e-06,
995
+ "loss": 0.9406,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.9634146341463414,
1000
+ "grad_norm": 3.2523257732391357,
1001
+ "learning_rate": 2.8707612044162595e-06,
1002
+ "loss": 0.9377,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.9773519163763065,
1007
+ "grad_norm": 3.42722487449646,
1008
+ "learning_rate": 2.7980996390386755e-06,
1009
+ "loss": 0.9622,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.9912891986062717,
1014
+ "grad_norm": 3.1534297466278076,
1015
+ "learning_rate": 2.7260544332383964e-06,
1016
+ "loss": 0.9219,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 2.005226480836237,
1021
+ "grad_norm": 2.9020955562591553,
1022
+ "learning_rate": 2.654642022022887e-06,
1023
+ "loss": 0.9233,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 2.0034843205574915,
1028
+ "grad_norm": 6.1046247482299805,
1029
+ "learning_rate": 2.5838786960460267e-06,
1030
+ "loss": 0.9226,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 2.0174216027874565,
1035
+ "grad_norm": 2.791771411895752,
1036
+ "learning_rate": 2.513780597891867e-06,
1037
+ "loss": 0.8854,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 2.0313588850174216,
1042
+ "grad_norm": 4.039772033691406,
1043
+ "learning_rate": 2.444363718392189e-06,
1044
+ "loss": 0.9067,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 2.0452961672473866,
1049
+ "grad_norm": 3.059945821762085,
1050
+ "learning_rate": 2.3756438929786434e-06,
1051
+ "loss": 0.872,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 2.059233449477352,
1056
+ "grad_norm": 3.355379819869995,
1057
+ "learning_rate": 2.3076367980703774e-06,
1058
+ "loss": 0.8897,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 2.073170731707317,
1063
+ "grad_norm": 3.4992244243621826,
1064
+ "learning_rate": 2.240357947497908e-06,
1065
+ "loss": 0.9425,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 2.087108013937282,
1070
+ "grad_norm": 3.829111099243164,
1071
+ "learning_rate": 2.173822688964094e-06,
1072
+ "loss": 0.9141,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 2.1010452961672472,
1077
+ "grad_norm": 2.9267561435699463,
1078
+ "learning_rate": 2.108046200543013e-06,
1079
+ "loss": 0.9238,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 2.1149825783972127,
1084
+ "grad_norm": 3.307797908782959,
1085
+ "learning_rate": 2.0430434872175245e-06,
1086
+ "loss": 0.9014,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 2.1289198606271778,
1091
+ "grad_norm": 3.0536694526672363,
1092
+ "learning_rate": 1.9788293774563163e-06,
1093
+ "loss": 0.8967,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 2.142857142857143,
1098
+ "grad_norm": 3.2300519943237305,
1099
+ "learning_rate": 1.9154185198312327e-06,
1100
+ "loss": 0.8817,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 2.156794425087108,
1105
+ "grad_norm": 3.410097599029541,
1106
+ "learning_rate": 1.8528253796756277e-06,
1107
+ "loss": 0.9151,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 2.1707317073170733,
1112
+ "grad_norm": 3.1198341846466064,
1113
+ "learning_rate": 1.7910642357845122e-06,
1114
+ "loss": 0.9359,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 2.1846689895470384,
1119
+ "grad_norm": 3.0908079147338867,
1120
+ "learning_rate": 1.7301491771572808e-06,
1121
+ "loss": 0.8697,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 2.1986062717770034,
1126
+ "grad_norm": 45.06842803955078,
1127
+ "learning_rate": 1.67009409978371e-06,
1128
+ "loss": 0.8753,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 2.2125435540069684,
1133
+ "grad_norm": 3.0929031372070312,
1134
+ "learning_rate": 1.610912703473989e-06,
1135
+ "loss": 0.9032,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 2.226480836236934,
1140
+ "grad_norm": 3.174290180206299,
1141
+ "learning_rate": 1.5526184887335188e-06,
1142
+ "loss": 0.9066,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 2.240418118466899,
1147
+ "grad_norm": 3.2078001499176025,
1148
+ "learning_rate": 1.4952247536831645e-06,
1149
+ "loss": 0.8793,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 2.254355400696864,
1154
+ "grad_norm": 3.8318631649017334,
1155
+ "learning_rate": 1.438744591025668e-06,
1156
+ "loss": 0.8881,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 2.2682926829268295,
1161
+ "grad_norm": 3.460146188735962,
1162
+ "learning_rate": 1.3831908850589433e-06,
1163
+ "loss": 0.9087,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 2.2822299651567945,
1168
+ "grad_norm": 3.1915969848632812,
1169
+ "learning_rate": 1.3285763087368974e-06,
1170
+ "loss": 0.9007,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 2.2961672473867596,
1175
+ "grad_norm": 3.0315561294555664,
1176
+ "learning_rate": 1.2749133207784575e-06,
1177
+ "loss": 0.879,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 2.3101045296167246,
1182
+ "grad_norm": 4.681447505950928,
1183
+ "learning_rate": 1.2222141628254902e-06,
1184
+ "loss": 0.9268,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 2.3240418118466897,
1189
+ "grad_norm": 2.946652889251709,
1190
+ "learning_rate": 1.1704908566502246e-06,
1191
+ "loss": 0.8952,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 2.337979094076655,
1196
+ "grad_norm": 2.944952964782715,
1197
+ "learning_rate": 1.1197552014128314e-06,
1198
+ "loss": 0.8807,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 2.35191637630662,
1203
+ "grad_norm": 3.2808735370635986,
1204
+ "learning_rate": 1.0700187709697969e-06,
1205
+ "loss": 0.8722,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 2.3658536585365852,
1210
+ "grad_norm": 3.887355327606201,
1211
+ "learning_rate": 1.0212929112336848e-06,
1212
+ "loss": 0.8863,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 2.3797909407665507,
1217
+ "grad_norm": 3.0687787532806396,
1218
+ "learning_rate": 9.7358873758489e-07,
1219
+ "loss": 0.9093,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 2.3937282229965158,
1224
+ "grad_norm": 2.890662431716919,
1225
+ "learning_rate": 9.269171323360006e-07,
1226
+ "loss": 0.8987,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 2.407665505226481,
1231
+ "grad_norm": 3.5224292278289795,
1232
+ "learning_rate": 8.812887422493117e-07,
1233
+ "loss": 0.9008,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 2.421602787456446,
1238
+ "grad_norm": 7.938294410705566,
1239
+ "learning_rate": 8.367139761080734e-07,
1240
+ "loss": 0.8774,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 2.435540069686411,
1245
+ "grad_norm": 3.240544557571411,
1246
+ "learning_rate": 7.932030023420393e-07,
1247
+ "loss": 0.9178,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 2.4494773519163764,
1252
+ "grad_norm": 3.17809796333313,
1253
+ "learning_rate": 7.507657467078292e-07,
1254
+ "loss": 0.8881,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 2.4634146341463414,
1259
+ "grad_norm": 3.075671911239624,
1260
+ "learning_rate": 7.094118900246642e-07,
1261
+ "loss": 0.94,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 2.4773519163763065,
1266
+ "grad_norm": 3.6002347469329834,
1267
+ "learning_rate": 6.691508659659682e-07,
1268
+ "loss": 0.8895,
1269
+ "step": 180
1270
+ }
1271
+ ],
1272
+ "logging_steps": 1,
1273
+ "max_steps": 213,
1274
+ "num_input_tokens_seen": 0,
1275
+ "num_train_epochs": 3,
1276
+ "save_steps": 36,
1277
+ "stateful_callbacks": {
1278
+ "TrainerControl": {
1279
+ "args": {
1280
+ "should_epoch_stop": false,
1281
+ "should_evaluate": false,
1282
+ "should_log": false,
1283
+ "should_save": true,
1284
+ "should_training_stop": false
1285
+ },
1286
+ "attributes": {}
1287
+ }
1288
+ },
1289
+ "total_flos": 6.164757741828047e+18,
1290
+ "train_batch_size": 1,
1291
+ "trial_name": null,
1292
+ "trial_params": null
1293
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acb5fabea60250d3a42d140aaad6152879cade63f57e1ddc910fe971895effcd
3
+ size 7416
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)